HackerRank

Components in a graph

There are $2 \times N$ nodes in an undirected graph, and a number of edges connecting some nodes. In each edge, the first value will be between 1 and N, inclusive. The second node will be between N+1 and $2 \times N$, inclusive. Given a list of edges, determine the size of the smallest and largest connected components that have 2 or more nodes. A node can have any number of connections. The highest node value will always be connected to at least 1 other node.

Note Single nodes should not be considered in the answer.

Example

$$bg = [[1, 5], [1, 6], [2, 4]]$$

The smaller component contains 2 nodes and the larger contains 3. Return the array [2,3].

Function Description

Complete the *connectedComponents* function in the editor below.

connectedComponents has the following parameter(s):

- int bg[n][2]: a 2-d array of integers that represent node ends of graph edges

Returns

- int[2]: an array with 2 integers, the smallest and largest component sizes

Input Format

The first line contains an integer n, the size of bg. Each of the next n lines contain two space-separated integers, bg[i][0] and bg[i][1].

Constraints

- $1 \le number of nodes N \le 15000$
- $1 \leq bg[i][0] \leq N$
- $N+1 \leq bg[i][1] \leq 2N$

Sample Input

Sample Output

```
2 4
```

Explanation

Since the component with node $\boldsymbol{5}$ contains only one node, it is not considered.

The number of vertices in the smallest connected component in the graph is 2 based on either (3,8) or (4,9).

The number of vertices in the largest connected component in the graph is 4 i.e. 1-2-6-7.