Components in a graph

There are $2 \times N$ nodes in an undirected graph, and a number of edges connecting some nodes. In each edge, the first value will be between 1 and N, inclusive. The second node will be between $N+1$ and $2 \times N$, inclusive. Given a list of edges, determine the size of the smallest and largest connected components that have 2 or more nodes. A node can have any number of connections. The highest node value will always be connected to at least 1 other node.

Note Single nodes should not be considered in the answer.

Example

$b g=[[1,5],[1,6],[2,4]]$

The smaller component contains 2 nodes and the larger contains 3 . Return the array $[2,3]$.

Function Description

Complete the connectedComponents function in the editor below.
connectedComponents has the following parameter(s):

- int $b g[n][2]:$ a 2-d array of integers that represent node ends of graph edges

Returns

- int[2]: an array with 2 integers, the smallest and largest component sizes

Input Format

The first line contains an integer n, the size of $b g$.
Each of the next n lines contain two space-separated integers, $b g[i][0]$ and $b g[i][1]$.

Constraints

- $1 \leq$ numberofnodes $N \leq 15000$
- $1 \leq b g[i][0] \leq N$
- $N+1 \leq b g[i][1] \leq 2 N$

Sample Input

```
STDIN Function
----- --------
5 bg[] size n = 5
6 bg = [[1, 6],[2, 7], [3, 8], [4,9], [2, 6]]
```


Sample Output

```
24
```


Explanation

Since the component with node 5 contains only one node, it is not considered.
The number of vertices in the smallest connected component in the graph is 2 based on either $(3,8)$ or $(4,9)$.

The number of vertices in the largest connected component in the graph is 4 i.e. $1-2-6-7$.

