HackerRank |

Connected Cells in a Grid

Consider a matrix where each cell contains either a 0 or a 1. Any cell containing a 1 is called a *filled* cell. Two cells are said to be *connected* if they are adjacent to each other horizontally, vertically, or diagonally. In the following grid, all cells marked \overline{x} are connected to the cell marked \overline{y} .

```
XXX
XYX
XXX
```

If one or more filled cells are also connected, they form a *region*. Note that each cell in a region is connected to zero or more cells in the region but is not necessarily directly connected to all the other cells in the region.

Given an $n \times m$ matrix, find and print the number of cells in the largest *region* in the matrix. Note that there may be more than one region in the matrix.

For example, there are two regions in the following 3×3 matrix. The larger region at the top left contains 3 cells. The smaller one at the bottom right contains 1.

```
110
100
001
```

Function Description

Complete the *connectedCell* function in the editor below.

connectedCell has the following parameter(s):

- $int\ matrix[n][m]$: matrix[i] represents the i^{th} row of the matrix

Returns

- int: the area of the largest region

Input Format

The first line contains an integer $n_{\rm r}$ the number of rows in the matrix.

The second line contains an integer $m{m}$, the number of columns in the matrix.

Each of the next n lines contains m space-separated integers matrix[i][j].

Constraints

• 0 < n, m < 10

Sample Input

Sample Output

```
5
```

Explanation

The diagram below depicts two regions of the matrix. Connected regions are filled with X or Y. Zeros are replaced with dots for clarity.

```
X X . . . . . X X . . . . X . . Y . . .
```

The larger region has $\mathbf{5}$ cells, marked \mathbf{x} .