Connecting Towns

Cities on a map are connected by a number of roads. The number of roads between each city is in an array and city 0 is the starting location. The number of roads from city 0 to city 1 is the first value in the array, from city 1 to city 2 is the second, and so on.

How many paths are there from city 0 to the last city in the list, modulo 1234567 ?

Example

$n=4$
routes $=[3,4,5]$
There are 3 roads to city 1,4 roads to city 2 and 5 roads to city 3 . The total number of roads is $3 \times 4 \times 5 \bmod 1234567=60$.

Note

Pass all the towns T_{i} for $\mathrm{i}=1$ to $\mathrm{n}-1$ in numerical order to reach T_{n}.

Function Description

Complete the connectingTowns function in the editor below.
connectingTowns has the following parameters:

- int n : the number of towns
- int routes[n-1]: the number of routes between towns

Returns

- int: the total number of routes, modulo 1234567.

Input Format

The first line contains an integer T, T test-cases follow.

Each test-case has 2 lines.

The first line contains an integer N (the number of towns).
The second line contains N-1 space separated integers where the $i^{\text {th }}$ integer denotes the number of routes, N_{i}, from the town T_{i} to $\mathrm{T}_{\mathrm{i}+1}$

Constraints

$1<=\mathrm{T}<=1000$
$2<\mathrm{N}<=100$
$1<=$ routes[i] <=1000

Sample Input

[^0]
Sample Output

3
8

Explanation

Case 1: 1 route from T_{1} to $T_{2}, 3$ routes from T_{2} to T_{3}, hence only 3 routes.
Case 2: There are 2 routes from each city to the next, hence $2 * 2 * 2=8$.

[^0]: 2
 3
 13

