Coprime Paths

You are given an undirected, connected graph, G, with n nodes and m edges where $m=n-1$. Each node i is initially assigned a value, $n^{n o d e} e_{i}$, that has at most 3 prime divisors.

You must answer q queries in the form $u v$. For each query, find and print the number of (x, y) pairs of nodes on the path between u and v such that $\operatorname{gcd}\left(\right.$ node $_{x}$, node $\left._{y}\right)=1$ and the length of the path between u and v is minimal among all paths from u to v.

Input Format

The first line contains two space-separated integers describing the respective values of n and q. The second line contains n space-separated integers describing the respective values of node $_{1}$, node $_{2}, \ldots$, node $_{n}$.
Each of the $n-1$ subsequent lines contains two space-separated integers, u and v, describing an edge between nodes u and v.
Each of the q subsequent lines contains two space-separated integers, u and v, describing a query.

Constraints

- $1 \leq n, q \leq 25 \times 10^{3}$
- $1 \leq$ node $_{i} \leq 10^{7}$
- $1 \leq u, v \leq n$

Output Format

For each query, print an integer on a new line denoting the number of (x, y) pairs of nodes on the path between u and v such that $\operatorname{gcd}\left(\right.$ node $_{x}$, node $\left._{y}\right)=1$ and the length of the path between u and v is minimal among all paths from u to v.

Sample Input 0

Sample Output 0

Explanation 0

The diagram below depicts graph G and the $u \leftrightarrow v$ paths specified by each query, as well as the Pair Values for each path in the form $\left(\right.$ node $_{x}$, node $\left._{y}\right)$:

Recall that, for each queried path, we want to find and print the number of (x, y) pairs of nodes such that $\operatorname{gcd}\left(\right.$ node $_{x}$, node $\left._{y}\right)=1$.

