Coprime Power Sum

Given two integers, m and k, Alice loves to calculate their power sum using the following formula:

$$
\operatorname{PowerSum}(m, k) \equiv \sum_{i=1}^{m} i^{k}
$$

Bob has a set, s, of n distinct pairwise coprime integers. Bob hates multiples of these integers, so he subtracts i^{k} from Alice's power sum for each $i \in[1, m]$ whenever there exists at least one $j \in[1, n]$ such that $i \bmod s_{j} \equiv 0$.

Alice and Bob are now confused about the final value of the power sum and decide to turn to Eve for help. Can you write a program that helps Eve solve this problem? Given q queries consisting of n, m, and k, print the value of the power sum modulo $10^{9}+7$ on a new line for each query.

Input Format

The first line contains an integer, q, denoting the number of queries. The $2 \cdot q$ lines describe each query over two lines:

1. The first line contains three space-separated integers denoting the respective values of n (the number of integers in Bob's set), k (the exponent variable in the power sum formula), and m (the upper range bound in the power sum formula).
2. The second line contains n distinct space-separated integers describing the respective elements in set s.

Constraints

- $1 \leq q \leq 2$
- $1 \leq n \leq 50$
- $0 \leq k \leq 10$
- $1 \leq m \leq 10^{12}$
- $1 \leq s_{j} \leq 10^{12}$
- $s_{i} \neq s_{j}$, where $i \neq j$
- $\operatorname{gcd}\left(s_{i}, s_{j}\right) \equiv 1$, where $i \neq j$

Output Format

For each query, print the resulting value of the power sum after Bob's subtraction, modulo $10^{9}+7$.

Sample Input

```
2

\section*{Sample Output}

13
1055

\section*{Explanation}

We perform the following \(q=2\) queries:
1. Alice first calculates the sum \(1^{1}+2^{1}+\ldots+10^{1}=55\). Bob's set contains 2 and 3 only, so he subtracts the power of all numbers that are multiples of 2 and/or 3 from Alice's sum to get:
\(55-2^{1}-3^{1}-4^{1}-6^{1}-8^{1}-9^{1}-10^{1}=13\). We then print the result of \(13 \bmod \left(10^{9}+7\right)=13\) on a new line.
2. Alice first calculates the sum \(1^{2}+2^{2}+\ldots+18^{2}=2109\). Bob then subtracts multiples of 4,9 , and 13 from Alice's sum to get: \(2109-4^{2}-8^{2}-9^{2}-12^{2}-13^{2}-16^{2}-18^{2}=1055\). We then print the result of \(1055 \bmod \left(10^{9}+7\right)=1055\) on a new line.```

