Costly Intervals HackerRankH

Given an array, your goal is to find, for each element, the largest subarray containing it whose cost is at
least k.

Specifically, let A = [A;, Ay,..., A,] be an array of length n, and let 4; , = [4;,...,A,] be the
subarray from index [to index 7. Also,

Let MAX(I,) be the largest number in A; .

Let MIN(Z, 7) be the smallest number in A, .

Let OR(I,) be the bitwise OR of the elements of 4;. .

Let AND(I, r) be the bitwise AND of the elements of A;, . ,.

The cost of A;. ., denoted cost(l,r), is defined as

cost(l,r) = (OR(l,r) — AND(l,r)) — (MAX(l,r) — MIN(l,r)).
The size of A;. ., is defined as r — [+ 1.

You are given the array A and and an integer k. For each index ¢ from 1 to n, your goal is to find the
largest size of any subarray A;. ., suchthat1 <1 <% <7 <mnand cost(l,r) > k.

Consider, array A = [2, 4,3,1, 7] and k = 6. The possible sub-arrays and their costs would be as follows:

Ir A[Ir) Cost(l,r) lr A[Ir) Cost(l,r) lr A[Ir) Cost(l,r)

1.1 [2] 0 22 [4] 0 3,4 [3,1] 0

M

1,2 [2,4] 4 23 [43] 3,5 (3,1,7] 0

13 [243] 5 24 [431] 4 44] 0
14 [243,1] 4 25 [43,17] 1 45 .7 0
15 [24317] 1 33 [3] 0 55 [0

Complete the function costlyIntervals which takes two integers n and k as first line of input, and

array A1, As, ..., A, in the second line of input. Return an array of 1 integers, where the it! element
contains the answer for index % of the input array, 1 < ¢ < n. Every element of the output array denotes
the largest size of a subarray containing ¢ whose cost is at least k, or —1 if there is no such subarray.

Constraints
e 1<n<10°

1/2

https://en.wikipedia.org/wiki/Bitwise_operation#OR
https://en.wikipedia.org/wiki/Bitwise_operation#AND

« 0<4; <10°
« 0<k<10°
Subtasks
e For 5% of the maximum score, n < 100.

e For 15% of the maximum score, n < 5 - 103.
Sample Input

n=>5k==6
A=1[2,4,3,1,7]

Sample Output
[-1,2,2,—1,—1]
Explanation

In this example, we have k = 6. There is only one subarray whose cost is at least 6, and that is
Az, 3 =[4,3], since cost(2,3) = 6. Its size is 2. Thus, for ¢ = 2 and 7 = 3, the answer is 2, and for the
others, —1.

2/2

