Count Strings

A regular expression is used to describe a set of strings. For this problem the alphabet is limited to 'a' and 'b'.

We define R to be a valid regular expression if:

1) R is "a" or " b ".
2) R is of the form " $\left(R_{1} R_{2}\right)$ ", where R_{1} and R_{2} are regular expressions.
3) R is of the form " $\left(R_{1} \mid R_{2}\right)$ " where R_{1} and R_{2} are regular expressions.
4) R is of the form " $\left(R_{1} *\right)$ " where R_{1} is a regular expression.

Regular expressions can be nested and will always have have two elements in the parentheses. ('*' is an element, '|' is not; basically, there will always be pairwise evaluation) Additionally, '*' will always be the second element; ' $(* a)$ ' is invalid.

The set of strings recognized by R are as follows:

1) If R is " a ", then the set of strings recognized $=a$.
2) If R is " b ", then the set of strings recognized $=b$.
3) If R is of the form " $\left(R_{1} R_{2}\right)$ " then the set of strings recognized = all strings which can be obtained by a concatenation of strings s_{1} and s_{2}, where s_{1} is recognized by R_{1} and s_{2} by R_{2}.
4) If R is of the form " $(R 1 \mid R 2)$ " then the set of strings recognized = union of the set of strings recognized by R_{1} and R_{2}.
5) If R is of the form " $\left(R_{1} *\right)$ " then the the strings recognized are the empty string and the concatenation of an arbitrary number of copies of any string recognized by R_{1}.

Task

Given a regular expression and an integer, L, count how many strings of length L are recognized by it.

Input Format

The first line contains the number of test cases T. T test cases follow.
Each test case contains a regular expression, R, and an integer, L.

Constraints

- $1 \leq T \leq 50$
- $1 \leq|R| \leq 100$
- $1 \leq L \leq 10^{9}$
- It is guaranteed that R will conform to the definition provided above.

Output Format

Print T lines, one corresponding to each test case containing the required answer for the corresponding test case. As the answers can be very big, output them modulo $10^{9}+7$.

Sample Input

Sample Output

```
2
32
100
```


Explanation

For the first case, the only strings recognized are " $a b$ " and " $b a$ ". Of the 4 possible strings of length 2,2 of them fit that expression.
For the second case, the RegEx recognizes any string of any length containing only a 's and b 's. The number of strings of length 5 recognized by this expression is $2^{5}=32$.
For the third case, the RegEx recognizes any string having one b, preceeded and followed by any number of a 's. There are 100 strings of length 100 which have a single b in them.

