Counting the Ways

Little Walter likes playing with his toy scales. He has N types of weights. The i^{th} weight type has weight a_i . There are infinitely many weights of each type.

Recently, Walter defined a function, F(X), denoting the number of different ways to combine several weights so their total weight is equal to X. Ways are considered to be different if there is a type which has a different number of weights used in these two ways.

For example, if there are 3 types of weights with corresonding weights 1, 1, and 2, then there are 4 ways to get a total weight of 2:

- 1. Use ${f 2}$ weights of type ${f 1}.$
- 2. Use ${f 2}$ weights of type ${f 2}.$
- 3. Use ${\bf 1}$ weight of type ${\bf 1}$ and ${\bf 1}$ weight of type ${\bf 2}.$
- 4. Use ${f 1}$ weight of type ${f 3}.$

Given N, L, R, and a_1, a_2, \ldots, a_N , can you find the value of $F(L) + F(L+1) + \ldots + F(R)$?

Input Format

The first line contains a single integer, N, denoting the number of types of weights.

The second line contains N space-separated integers describing the values of a_1, a_2, \ldots, a_N , respectively

The third line contains two space-separated integers denoting the respective values of L and R.

Constraints

- $1 \le N \le 10$
- $0 < a_i \leq 10^5$
- $a_1 imes a_2 imes \ldots imes a_N \le 10^5$
- $1 \le L \le R \le 10^{17}$

Note: The time limit for C/C++ is 1 second, and for Java it's 2 seconds.

Output Format

Print a single integer denoting the answer to the question. As this value can be very large, your answer must be modulo $10^9 + 7$.

Sample Input

Sample Output

22

Explanation

 $egin{aligned} F(1) &= 1 \ F(2) &= 2 \ F(3) &= 3 \ F(4) &= 4 \ F(5) &= 5 \ F(6) &= 7 \end{aligned}$