Counting the Ways

Little Walter likes playing with his toy scales. He has N types of weights. The $i^{\text {th }}$ weight type has weight a_{i}. There are infinitely many weights of each type.

Recently, Walter defined a function, $F(X)$, denoting the number of different ways to combine several weights so their total weight is equal to X. Ways are considered to be different if there is a type which has a different number of weights used in these two ways.

For example, if there are 3 types of weights with corresonding weights 1 , 1 , and 2 , then there are 4 ways to get a total weight of 2 :

1. Use 2 weights of type 1 .
2. Use 2 weights of type 2 .
3. Use 1 weight of type 1 and 1 weight of type 2 .
4. Use 1 weight of type 3 .

Given N, L, R, and $a_{1}, a_{2}, \ldots, a_{N}$, can you find the value of $F(L)+F(L+1)+\ldots+F(R)$?

Input Format

The first line contains a single integer, N, denoting the number of types of weights. The second line contains N space-separated integers describing the values of $a_{1}, a_{2}, \ldots, a_{N}$, respectively
The third line contains two space-separated integers denoting the respective values of L and R.

Constraints

- $1 \leq N \leq 10$
- $0<a_{i} \leq 10^{5}$
- $a_{1} \times a_{2} \times \ldots \times a_{N} \leq 10^{5}$
- $1 \leq L \leq R \leq 10^{17}$

Note: The time limit for C/C++ is 1 second, and for Java it's 2 seconds.

Output Format

Print a single integer denoting the answer to the question. As this value can be very large, your answer must be modulo $10^{9}+7$.

Sample Input

Explanation

$F(1)=1$
$F(2)=2$
$F(3)=3$
$F(4)=4$
$F(5)=5$
$F(6)=7$

