Counting On a Tree

Taylor loves trees, and this new challenge has him stumped!
Consider a tree, t, consisting of n nodes. Each node is numbered from 1 to n, and each node i has an integer, c_{i}, attached to it.

A query on tree t takes the form $w x y z$. To process a query, you must print the count of ordered pairs of integers (i, j) such that the following four conditions are all satisfied:

- $i \neq j$
- $i \in$ the path from node w to node x.
- $j \in$ path from node y to node z.
- $c_{i}=c_{j}$

Given t and q queries, process each query in order, printing the pair count for each query on a new line.

Input Format

The first line contains two space-separated integers describing the respective values of n (the number of nodes) and q (the number of queries).
The second line contains n space-separated integers describing the respective values of each node (i.e., $c_{1}, c_{2}, \ldots, c_{n}$).
Each of the $n-1$ subsequent lines contains two space-separated integers, u and v, defining a bidirectional edge between nodes u and v.
Each of the q subsequent lines contains $a \mathrm{w} x \mathrm{y}$ z query, defined above.

Constraints

- $1 \leq n \leq 10^{5}$
- $1 \leq q \leq 50000$
- $1 \leq c_{i} \leq 10^{9}$
- $1 \leq u, v, w, x, y, z \leq n$

Scoring for this problem is Binary, that means you have to pass all the test cases to get a positive score.

Output Format

For each query, print the count of ordered pairs of integers satisfying the four given conditions on a new line.

Sample Input

```
10 5
```



```
12
```

```
4
3
6
4
849
9 5 9
646
5 8 5 8
```


Sample Output

Explanation

We perform $q=5$ queries on the following tree:

1. Find the number of valid ordered pairs where i is in the path from node 8 to node 5 and j is in the path from node 2 to node 10 . No such pair exists, so we print 0 .
2. Find the number of valid ordered pairs where i is in the path from node 3 to node 8 and j is in the path from node 4 to node 9 . One such pair, $(3,7)$, exists, so we print 1 .
3. Find the number of valid ordered pairs where i is in the path from node 1 to node 9 and j is in the path from node 5 to node 9 . Three such pairs, $(1,5),(3,7)$, and $(7,3)$ exist, so we print 3 .
4. Find the number of valid ordered pairs where i is in the path from node 4 to node 6 and j is in the path from node 4 to node 6 . Two such pairs, $(4,6)$ and $(6,4)$, exist, so we print 2.
5. Find the number of valid ordered pairs where i is in the path from node 5 to node 8 and j is in the path from node 5 to node 8 . No such pair exists, so we print 0 .
