Counting Special Sub-Cubes

HackerRank

Given an $n \times n \times n$ cube, let f(x,y,z) (where $1 \le x,y,z \le n$) denote the value stored in cell (x,y,z).

A $k \times k \times k$ sub-cube (where $1 \le k \le n$) of an $n \times n \times n$ cube is considered to be *special* if the maximum value stored in any cell in the sub-cube is equal to k.

For each k in the inclusive range [1, n], calculate the number of special sub-cubes. Then print each $count_k$ as a single line of space-separated integers (i.e., $count_1 \ count_2 \ \dots \ count_n$).

Input Format

The first line contains an integer, q, denoting the number of queries. The $2 \cdot q$ subsequent lines describe each query over two lines:

- 1. The first line contains an integer, n, denoting the side length of the initial cube.
- 2. The second line contains n^3 space-separated integers describing an array of n^3 integers in the form $a_0, a_1, \ldots, a_{n^3-1}$. The integer in some cell (x, y, z) is calculated using the formula $a[(x-1) \cdot n^2 + (y-1) \cdot n + z]$.

Constraints

- $1 \leq q \leq 5$
- $1 \le n \le 50$
- + $1 \leq f(x,y,z) \leq n$ where $1 \leq x,y,z \leq n$

Output Format

For each query, print n space-separated integers where the i^{th} integer denotes the number of special sub-cubes for k = i.

Sample Input

```
2
2
2 1 1 1 1 1 1 1 1
2
1 1 1 1 2 1 1 2
```

Sample Output

Explanation

We must perform the following q=2 queries:

- 1. We have a cube of size n=2 and must calculate the number of special sub-cubes for the following values of k:
 - k = 1: There are $2^3 = 8$ sub-cubes of size 1 and seven of them have a maximum value of 1 written inside them. So, for k = 1, the answer is 7.
 - k=2: There is only one sub-cube of size 2 and the maximum number written inside it is 2. So, for k=2, the answer is 1.

We then print the respective values for each k as a single line of space-separated integers (i.e., 7 1).

- 2. We have a cube of size n=2 and must calculate the number of special sub-cubes for the following values of k:
 - k = 1: There are $2^3 = 8$ sub-cubes of size 1 and six of them have a maximum value of 1 written inside them. So, for k = 1, the answer is 6.
 - k=2: There is only one sub-cube of size 2 and the maximum number written inside it is 2. So, for k=2, the answer is 1.

We then print the respective values for each k as a single line of space-separated integers (i.e., $\frac{6}{1}$).