Counting Special Sub-Cubes

Given an $n \times n \times n$ cube, let $f(x, y, z)$ (where $1 \leq x, y, z \leq n)$ denote the value stored in cell (x, y, z).
A $k \times k \times k$ sub-cube (where $1 \leq k \leq n$) of an $n \times n \times n$ cube is considered to be special if the maximum value stored in any cell in the sub-cube is equal to k.

For each k in the inclusive range $[1, n]$, calculate the number of special sub-cubes. Then print each count $_{k}$ as a single line of space-separated integers (i.e., count count $_{2}$. . count ${ }_{n}$).

Input Format

The first line contains an integer, q, denoting the number of queries. The $2 \cdot q$ subsequent lines describe each query over two lines:

1. The first line contains an integer, n, denoting the side length of the initial cube.
2. The second line contains n^{3} space-separated integers describing an array of n^{3} integers in the form $a_{0}, a_{1}, \ldots, a_{n^{3}-1}$. The integer in some cell (x, y, z) is calculated using the formula $a\left[(x-1) \cdot n^{2}+(y-1) \cdot n+z\right]$.

Constraints

- $1 \leq q \leq 5$
- $1 \leq n \leq 50$
- $1 \leq f(x, y, z) \leq n$ where $1 \leq x, y, z \leq n$

Output Format

For each query, print n space-separated integers where the $i^{t h}$ integer denotes the number of special sub-cubes for $k=i$.

Sample Input

```
2
2
2
2
1
```


Sample Output

Explanation

We must perform the following $q=2$ queries:

1. We have a cube of size $n=2$ and must calculate the number of special sub-cubes for the following values of k :

- $k=1$: There are $2^{3}=8$ sub-cubes of size 1 and seven of them have a maximum value of 1 written inside them. So, for $k=1$, the answer is 7 .
- $k=2$: There is only one sub-cube of size 2 and the maximum number written inside it is 2 . So, for $k=2$, the answer is 1 .

We then print the respective values for each k as a single line of space-separated integers (i.e., 7 $1)$.
2. We have a cube of size $n=2$ and must calculate the number of special sub-cubes for the following values of k :

- $k=1$: There are $2^{3}=8$ sub-cubes of size 1 and six of them have a maximum value of 1 written inside them. So, for $k=1$, the answer is 6 .
- $k=2$: There is only one sub-cube of size 2 and the maximum number written inside it is 2 . So, for $k=2$, the answer is 1 .

We then print the respective values for each k as a single line of space-separated integers (i.e., 6 $1)$.

