HackerRankB

Counting Sort 2

Often, when a list is sorted, the elements being sorted are just keys to other values. For example, if you
are sorting files by their size, the sizes need to stay connected to their respective files. You cannot just
take the size numbers and output them in order, you need to output all the required file information.

The counting sort is used if you just need to sort a list of integers. Rather than using a comparison, you
create an integer array whose index range covers the entire range of values in your array to sort. Each
time a value occurs in the original array, you increment the counter at that index. At the end, run through
your counting array, printing the value of each non-zero valued index that number of times.

For example, consider an array arr = [1,1, 3,2, 1]. All of the values are in the range [0... 3], so create
an array of zeroes, result = [0, 0,0, 0]. The results of each iteration follow:

i arr[i] result

0 1 [o, 1, 0, 0]
1 1 [0, 2, 0, 0]
2 3 [0, 2, 0, 1]
3 2 [o, 2, 1, 11
4 1 [o, 3, 1, 11

~

Now we can print the sorted array: sorted = [1,1,1,2, 3].

Challenge
Given an unsorted list of integers, use the counting sort method to sort the list and then print the sorted
list.

Hint: You can use your previous code that counted the items to print out the actual values in order.
Function Description

Complete the countingSort function in the editor below. It should return the original array, sorted
ascending, as an array of integers.

countingSort has the following parameter(s):
e arr: an array of integers
Input Format

The first line contains an integer n, the length of arr. The next line contains space-separated integers
arr[i] where 0 < i < n.

Constraints

0 < n < 1000000
0 < arrfi] < 100

Output Format

Print the sorted list as a single line of space-separated integers.

1/2



Sample Input

100
63 25 73 1 98 73 56 84 86 57 16 83 8 25 81 56 9 53 98 67 99 12 83 89 80 91 39 86 76 85 74 39 25 90 59 10 94

32 44 3 89 30 27 79 46 96 27 32 18 21 92 69 81 40 40 34 68 78 24 87 42 69 23 41 78 22 6 90 99 89 50 30 20 1
43 3 70 95 33 46 44 9 69 48 33 60 65 16 82 67 61 32 21 79 75 75 13 87 70 33

Sample Output

1133628991012 13 16 16 18 20 21 21 22 23 24 25 25 25 27 27 30 30 32 32 32 33 33
33 34 39 39 40 40 41 42 43 44 44 46 46 48 50 53 56 56 57 59 60 61 63 65 67 67 68 69 69 69
70 70 73 73 74 75 75 76 78 78 79 79 80 81 81 82 83 83 84 85 86 86 87 87 89 89 89 90 90 91

92 94 95 96 98 98 99 99

Explanation

Once our counting array has been filled, loop from index 0 to the end, printing each % value arr[i] times.

2/2



