BFS: Shortest Reach in a Graph

Consider an undirected graph consisting of n nodes where each node is labeled from 1 to n and the edge between any two nodes is always of length 6 . We define node s to be the starting position for a BFS. Given a graph, determine the distances from the start node to each of its descendants and return the list in node number order, ascending. If a node is disconnected, it's distance should be -1 .

For example, there are $n=6$ nodes in the graph with a starting node $s=1$. The list of edges $=[[1,2],[2,3],[3,4],[1,5]]$, and each has a weight of 6 .

Starting from node 1 and creating a list of distances, for nodes 2 through 6 we have distances $=[6,12,18,6,-1]$.

Function Description

Define a Graph class with the required methods to return a list of distances.

Input Format

The first line contains an integer, q, the number of queries.
Each of the following q sets of lines is as follows:

- The first line contains two space-separated integers, n and m, the number of nodes and the number of edges.
- Each of the next m lines contains two space-separated integers, u and v, describing an edge connecting node u to node v.
- The last line contains a single integer, s, the index of the starting node.

Constraints

- $1 \leq q \leq 10$
- $2 \leq n \leq 1000$
- $1 \leq m \leq \frac{n \cdot(n-1)}{2}$
- $1 \leq u, v, s \leq n$

Output Format

For each of the q queries, print a single line of $n-1$ space-separated integers denoting the shortest distances to each of the $n-1$ other nodes from starting position s. These distances should be listed sequentially by node number (i.e., $1,2, \ldots, n$), but should not include node s. If some node is unreachable from s, print -1 as the distance to that node.

Sample Input

```
2
2
3
1
3
```


Sample Output

```
6 6 -1
-1 6
```


Explanation

We perform the following two queries:

1. The given graph can be represented as:

where our start node, s, is node 1 . The shortest distances from s to the other nodes are one edge to node 2 , one edge to node 3 , and there is no connection to node 4 .
2. The given graph can be represented as:

where our start node, s, is node 2 . There is only one edge here, so node 1 is unreachable from node 2 and node 3 has one edge connecting it to node 2 . We then print node 2 's distance to nodes 1 and 3 (respectively) as a single line of space-separated integers: -1 6.

Note: Recall that the actual length of each edge is 6 , and we print -1 as the distance to any node that's unreachable from s.

