Time Complexity: Primality

A prime is a natural number greater than 1 that has no positive divisors other than 1 and itself. Given p integers, determine the primality of each integer and return Prime or Not prime on a new line.

Note: If possible, try to come up with an $\mathcal{O}(\sqrt{n})$ primality algorithm, or see what sort of optimizations you can come up with for an $\mathcal{O}(n)$ algorithm. Be sure to check out the Editorial after submitting your code.

Function Description

Complete the primality function in the editor below.
primality has the following parameter(s):

- int n : an integer to test for primality

Returns

- string: Prime if n is prime, or Not prime

Input Format

The first line contains an integer, p, the number of integers to check for primality. Each of the p subsequent lines contains an integer, n, the number to test.

Constraints

- $1 \leq p \leq 30$
- $1 \leq n \leq 2 \times 10^{9}$

Sample Input

```
STDIN Function
----- --------
3 p = 3 (number of values to follow)
12 n = 12 (first number to check)
5 n = 5
7 n = 7
```


Sample Output

```
Not prime
Prime
Prime
```


Explanation

We check the following $p=3$ integers for primality:

1. $n=12$ is divisible by numbers other than 1 and itself (i.e.: $2,3,4,6$).
2. $n=5$ is only divisible 1 and itself.
3. $n=7$ is only divisible 1 and itself.
