Recursion: Fibonacci Numbers

The Fibonacci Sequence

The Fibonacci sequence appears in nature all around us, in the arrangement of seeds in a sunflower and the spiral of a nautilus for example.

The Fibonacci sequence begins with $\operatorname{fibonacci}(0)=0$ and $\operatorname{fibonacci}(1)=1$ as its first and second terms. After these first two elements, each subsequent element is equal to the sum of the previous two elements.

Programmatically:

- fibonacci $(0)=0$
- fibonacci $(1)=1$
- fibonacci $(n)=$ fibonacci $(n-1)+$ fibonacci $(n-2)$

Given n, return the $n^{\text {th }}$ number in the sequence.

Example

$n=5$
The Fibonacci sequence to 6 is $f s=[0,1,1,2,3,5,8]$. With zero-based indexing, $f s[5]=5$.

Function Description

Complete the recursive function fibonacci in the editor below.
fibonacci has the following parameter(s):

- int n : the index of the sequence to return

Returns

- int: the $n^{\text {th }}$ element in the Fibonacci sequence

Input Format

The integer n.

Constraints

- $0<n \leq 30$

Sample Input

Sample Output

2

Explanation

The Fibonacci sequence begins as follows:
fibonacci $(0)=0$
fibonacci $(1)=1$
fibonacci $(2)=(0+1)=1$
fibonacci $(3)=(1+1)=2$
fibonacci $(4)=(1+2)=3$
fibonacci $(5)=(2+3)=5$
fibonacci $(6)=(3+5)=8$

In the sequence above, fibonacci(3) is 2 .

