
1/2

Queues: A Tale of

Two Stacks

A queue is an abstract data type that maintains the order in which elements were added to it, allowing

the oldest elements to be removed from the front and new elements to be added to the rear. This is

called a First-In-First-Out (FIFO) data structure because the first element added to the queue (i.e., the

one that has been waiting the longest) is always the first one to be removed.

A basic queue has the following operations:

Enqueue: add a new element to the end of the queue.

Dequeue: remove the element from the front of the queue and return it.

In this challenge, you must first implement a queue using two stacks. Then process queries, where

each query is one of the following types:

1. 1 x : Enqueue element into the end of the queue.

2. 2 : Dequeue the element at the front of the queue.

3. 3 : Print the element at the front of the queue.

For example, a series of queries might be as follows:

Function Description

Complete the put, pop, and peek methods in the editor below. They must perform the actions as

described above.

Input Format

The first line contains a single integer, , the number of queries.

Each of the next lines contains a single query in the form described in the problem statement above. All

queries start with an integer denoting the query , but only query is followed by an additional

space-separated value, , denoting the value to be enqueued.

Constraints

https://en.wikipedia.org/wiki/Queue_(abstract_data_type)

2/2

It is guaranteed that a valid answer always exists for each query of types and .

Output Format

For each query of type , return the value of the element at the front of the fifo queue on a new line.

Sample Input

10

1 42

2

1 14

3

1 28

3

1 60

1 78

2

2

Sample Output

14

14

Explanation

