Davis has a number of staircases in his house and he likes to climb each staircase 1 , 2 , or 3 steps at a time. Being a very precocious child, he wonders how many ways there are to reach the top of the staircase.

Given the respective heights for each of the s staircases in his house, find and print the number of ways he can climb each staircase, module $10^{10}+7$ on a new line.

Example

$n=5$
The staircase has 5 steps. Davis can step on the following sequences of steps:

```
1 1 1 1 1
1 1 1 2
1 1 2 1
| 1 1
1 1 1
2 2
2 1
1 2
1 3
3 1
1 1
3
3
```

There are 13 possible ways he can take these 5 steps and 13 modulo $10000000007=13$

Function Description

Complete the stepPerms function using recursion in the editor below.
stepPerms has the following parameter(s):

- int n : the number of stairs in the staircase

Returns

- int: the number of ways Davis can climb the staircase, modulo 10000000007

Input Format

The first line contains a single integer, s, the number of staircases in his house. Each of the following s lines contains a single integer, n, the height of staircase i.

Constraints

- $1 \leq s \leq 5$
- $1 \leq n \leq 36$
- $1 \leq n \leq 20$ for 50% of the maximum score.

Sample Input

```
STDIN Function
----- --------
3 S = 3 (number of staircases)
1 first staircase n = 1
3 second n = 3
7 third n = 7
```


Sample Output

Explanation

Let's calculate the number of ways of climbing the first two of the Davis' $s=3$ staircases:

1. The first staircase only has $n=1$ step, so there is only one way for him to climb it (i.e., by jumping 1 step). Thus, we print 1 on a new line.
2. The second staircase has $n=3$ steps and he can climb it in any of the four following ways:
3. $1 \rightarrow 1 \rightarrow 1$
4. $1 \rightarrow 2$
5. $2 \rightarrow 1$
6. 3

Thus, we print 4 on a new line.

