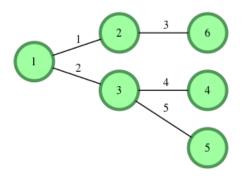
Cut the Tree

HackerRank


There is an undirected tree where each vertex is numbered from 1 to n, and each contains a data value. The *sum* of a tree is the sum of all its nodes' data values. If an edge is cut, two smaller trees are formed. The *difference* between two trees is the absolute value of the difference in their sums.

Given a tree, determine which edge to cut so that the resulting trees have a minimal *difference* between them, then return that difference.

Example

 $data = [1, 2, 3, 4, 5, 6] \\ edges = [(1, 2), (1, 3), (2, 6), (3, 4), (3, 5)]$

In this case, node numbers match their weights for convenience. The graph is shown below.

The values are calculated as follows:

Edge	Tree 1	Tree 2	Absolute
Cut	Sum	Sum	Difference
1	8	13	5
2	9	12	3
3	6	15	9
4	4	17	13
5	5	16	11

The minimum absolute difference is **3**.

Note: The given tree is *always* rooted at vertex 1.

Function Description

Complete the *cutTheTree* function in the editor below.

cutTheTree has the following parameter(s):

- *int data[n]:* an array of integers that represent node values
- *int edges[n-1][2]:* an 2 dimensional array of integer pairs where each pair represents nodes connected by the edge

Returns

• *int:* the minimum achievable absolute difference of tree sums

Input Format

The first line contains an integer n_r , the number of vertices in the tree.

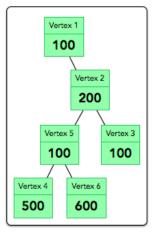
The second line contains n space-separated integers, where each integer u denotes the node[u] data value, data[u].

Each of the n-1 subsequent lines contains two space-separated integers u and v that describe edge $u\leftrightarrow v$ in tree t.

Constraints

- $3 \le n \le 10^5$
- $1 \leq data[u] \leq 1001$, where $1 \leq u \leq n$.

Sample Input


STDIN	Function
6	data[] size n = 6
100 200 100 500 100 600	data = $[100, 200, 100, 500, 100, 600]$
1 2	edges = [[1, 2], [2, 3], [2, 5], [4, 5], [5, 6]]
2 3	
2 5	
4 5	
5 6	

Sample Output

400

Explanation

We can visualize the initial, uncut tree as:

There are n-1=5 edges we can cut:

- 1. Edge $1\leftrightarrow 2$ results in $d_{1\leftrightarrow 2}=1500-100=1400$
- 2. Edge $2 \leftrightarrow 3$ results in $d_{2 \leftrightarrow 3} = 1500 100 = 1400$
- 3. Edge $2\leftrightarrow 5$ results in $d_{2\leftrightarrow 5}=1200-400=800$

- 4. Edge $4\leftrightarrow 5$ results in $d_{4\leftrightarrow 5}=1100-500=600$
- 5. Edge $5\leftrightarrow 6$ results in $d_{5\leftrightarrow 6}=1000-600=400$

The minimum *difference* is 400.