Cut Tree

Given a tree T with n nodes, how many subtrees $\left(T^{\prime}\right)$ of T have at most K edges connected to ($T-T^{\prime}$)?

Input Format

The first line contains two integers n and K followed by $n-1$ lines each containing two integers a \& b denoting that there's an edge between a \& b.

Constraints

$1<=\mathrm{K}<=\mathrm{n}<=50$
Every node is indicated by a distinct number from 1 to n .

Output Format

A single integer which denotes the number of possible subtrees.

Sample Input

1
21
23

Sample Output

$$
6
$$

Explanation

There are $2^{\wedge} 3$ possible sub-trees:
$\}\{1\}\{2\}\{3\}\{1,2\}\{1,3\}\{2,3\}\{1,2,3\}$
But:
the sub-trees $\{2\}$ and $\{1,3\}$ are not valid. $\{2\}$ isn't valid because it has 2 edges connecting to it's complement $\{1,3\}$ whereas $K=1$ in the sample test-case $\{1,3\}$ isn't valid because, well, it's not a subtree. The nodes aren't connected.

