Determining DNA Health

DNA is a nucleic acid present in the bodies of living things. Each piece of DNA contains a number of genes, some of which are beneficial and increase the DNA's total health. Each gene has a health value, and the total health of a DNA is the sum of the health values of all the beneficial genes that occur as a substring in the DNA. We represent genes and DNA as non-empty strings of lowercase English alphabetic letters, and the same gene may appear multiple times as a susbtring of a DNA.

Given the following:

- An array of beneficial gene strings, genes $=\left[g_{0}, g_{1}, \ldots, g_{n-1}\right]$. Note that these gene sequences are not guaranteed to be distinct.
- An array of gene health values, health $=\left[h_{0}, h_{1}, \ldots, h_{n-1}\right]$, where each h_{i} is the health value for gene g_{i}.
- A set of s DNA strands where the definition of each strand has three components, start, end, and d, where string d is a DNA for which genes $g_{\text {start }}, \ldots, g_{\text {end }}$ are healthy.

Find and print the respective total healths of the unhealthiest (minimum total health) and healthiest (maximum total health) strands of DNA as two space-separated values on a single line.

Input Format

The first line contains an integer, n, denoting the total number of genes.
The second line contains n space-separated strings describing the respective values of $g_{0}, g_{1}, \ldots, g_{n-1}$ (i.e., the elements of genes).

The third line contains n space-separated integers describing the respective values of $h_{0}, h_{1}, \ldots, h_{n-1}$ (i.e., the elements of health).

The fourth line contains an integer, s, denoting the number of strands of DNA to process.
Each of the s subsequent lines describes a DNA strand in the form start end d, denoting that the healthy genes for DNA strand d are $g_{s t a r t}, \ldots, g_{\text {end }}$ and their respective correlated health values are $h_{\text {start }}, \ldots, h_{\text {end }}$.

Constraints

- $1 \leq n, s \leq 10^{5}$
- $0 \leq h_{i} \leq 10^{7}$
- $0 \leq$ first \leq last $<n$
- $1 \leq$ the sum of the lengths of all genes and DNA strands $\leq 2 \times 10^{6}$
- It is guaranteed that each g_{i} consists of lowercase English alphabetic letters only (i.e., a to z).

Output Format

Print two space-separated integers describing the respective total health of the unhealthiest and the healthiest strands of DNA.

Sample Input 0

Sample Output 0

```
019
```


Explanation 0

In the diagrams below, the ranges of beneficial genes for a specific DNA on the left are highlighed in green and individual instances of beneficial genes on the right are bolded. The total healths of the $s=3$ strands are:

$d=$ caaab, first $=1$, last $=5$												
indices genes health	0	1	2	3	4	5	gene value					
	a	b	c	aa	d	b		caaab	caaab	caaab	caaab	caaab
	1	2	3	4	5	6		3	4	4	2	6

1.

The total health of caaab is $3+4+4+2+6=19$.

indices	$d=x y z$, first $=0$, last $=4$						gene	
	0	1	2	3	4	5		
genes	a	b	c	aa	d	b		xyz
health	1	2	3	4	5	6		0

2.

The total health of $x y z$ is 0 , because it contains no beneficial genes.

$d=\mathrm{bcdybc}$, first $=2$, last $=4$										
indices genes health	0	1	2	3	4	5	gene value			
	a	b	c	aa	d	b		bcdybc	bcdybc	bcdybc
	1	2	3	4	5	6		3	5	3

3.

The total health of bcdybc is $3+5+3=11$.
The unhealthiest DNA strand is xyz with a total health of 0 , and the healthiest DNA strand is caaab with a total health of 19. Thus, we print 019 as our answer.

