Let $G$ be a connected, directed graph with vertices numbered from 1 to $n$ such that any vertex is reachable from vertex 1 . In addition, any two distinct vertices, $u$ and $v$, are connected by at most one edge $(u, v)$.

Consider the standard DFS (Depth-First Search) algorithm starting from vertex 1 . As every vertex is reachable, each edge $(u, v)$ of $G$ is classified by the algorithm into one of four groups:

1. tree edge: If $v$ was discovered for the first time when we traversed $(u, v)$.
2. back edge: If $v$ was already on the stack when we tried to traverse $(u, v)$.
3. forward edge: If $v$ was already discovered while $u$ was on the stack.
4. cross edge: Any edge that is not a tree, back, or forward edge.

To better understand this, consider the following C++ pseudocode:

```
// initially false
bool discovered[n];
// initially false
bool finished[n];
vector<int> g[n];
void dfs(int u) {
    // u is on the stack now
    discovered[u] = true;
    for (int v: g[u]) {
        if (finished[v]) {
            // forward edge if u was on the stack when v was discovered
            // cross edge otherwise
            continue;
        }
        if (discovered[v]) {
            // back edge
            continue;
        }
        // tree edge
        dfs(v);
    }
    finished[u] = true;
    // u is no longer on the stack
}
```

Given four integers, $t, b, f$, and $c$, construct any graph $G$ having exactly $t$ tree edges, exactly back edges, exactly $f$ forward edges, and exactly $c$ cross edges. Then print $G$ according to the Output Format specified below.

## Input Format

A single line of four space-separated integers describing the respective values of $t, b, f$, and $c$.

## Constraints

- $0 \leq t, b, f, c \leq 10^{5}$


## Output Format

If there is no such graph $G$, print -1 ; otherwise print the following:

1. The first line must contain an integer, $n$, denoting the number of vertices in $G$.
2. Each line $i$ of the $n$ subsequent lines must contain the following space-separated integers:

- The first integer is the outdegree, $d_{i}$, of vertex $i$.
- This is followed by $d_{i}$ distinct numbers, $v_{i, j}$, denoting edges from $u$ to $v_{i, j}$ for $1 \leq j \leq d_{i}$. The order of each $v_{i, j}$ should be the order in which a DFS considers edges.


## Sample Input 0

```
3111
```


## Sample Output 0

```
4
24 3
|
1 1
12
```


## Explanation 0

The DFS traversal order is: $1,2,3,2,1,4,1$. Thus, $(1,2),(2,3)$ and $(1,4)$ are tree edges; $(3,1)$ is a back edge; $(1,3)$ is a forward edge; and $(4,2)$ is a cross edge. This is demonstrated by the diagram below, in which tree edges are black, forward edges are blue, back edges are red, and cross edges are green.


## Sample Input 1

```
1 10 20 30
```


## Sample Output 1

## Explanation 1

No such graph exists satisfying the given values.

