
1/3

DFS Edges

Let be a connected, directed graph with vertices numbered from to such that any vertex is

reachable from vertex . In addition, any two distinct vertices, and , are connected by at most one

edge .

Consider the standard DFS (Depth-First Search) algorithm starting from vertex . As every vertex is

reachable, each edge of is classified by the algorithm into one of four groups:

1. tree edge: If was discovered for the first time when we traversed .

2. back edge: If was already on the stack when we tried to traverse .

3. forward edge: If was already discovered while was on the stack.

4. cross edge: Any edge that is not a tree, back, or forward edge.

To better understand this, consider the following C++ pseudocode:

// initially false

bool discovered[n];

// initially false

bool finished[n];

vector<int> g[n];

void dfs(int u) {

 // u is on the stack now

 discovered[u] = true;

 for (int v: g[u]) {

 if (finished[v]) {

 // forward edge if u was on the stack when v was discovered

 // cross edge otherwise

 continue;

 }

 if (discovered[v]) {

 // back edge

 continue;

 }

 // tree edge

 dfs(v);

 }

 finished[u] = true;

 // u is no longer on the stack

}

Given four integers, , , , and , construct any graph having exactly tree edges, exactly back

edges, exactly forward edges, and exactly cross edges. Then print according to the Output Format

specified below.

Input Format

A single line of four space-separated integers describing the respective values of , , , and .

Constraints

2/3

Output Format

If there is no such graph , print -1 ; otherwise print the following:

1. The first line must contain an integer, , denoting the number of vertices in .

2. Each line of the subsequent lines must contain the following space-separated integers:

The first integer is the outdegree, , of vertex .

This is followed by distinct numbers, , denoting edges from to for . The

order of each should be the order in which a DFS considers edges.

Sample Input 0

3 1 1 1

Sample Output 0

4

3 2 4 3

1 3

1 1

1 2

Explanation 0

The DFS traversal order is: . Thus, , and are tree edges; is a

back edge; is a forward edge; and is a cross edge. This is demonstrated by the diagram

below, in which tree edges are black, forward edges are blue, back edges are red, and cross edges are

green.

Sample Input 1

1 10 20 30

Sample Output 1

https://en.wikipedia.org/wiki/Directed_graph#Indegree_and_outdegree

3/3

-1

Explanation 1

No such graph exists satisfying the given values.

