Given a square matrix, calculate the absolute difference between the sums of its diagonals.
For example, the square matrix $a r r$ is shown below:

```
123
4 6
9 8 9
```

The left-to-right diagonal $=1+5+9=15$. The right to left diagonal $=3+5+9=17$. Their absolute difference is $|15-17|=2$.

Function description

Complete the diagonalDifference function in the editor below.
diagonalDifference takes the following parameter:

- int arr[n][m]: an array of integers

Return

- int: the absolute diagonal difference

Input Format

The first line contains a single integer, n, the number of rows and columns in the square matrix arr. Each of the next n lines describes a row, $\operatorname{arr}[i]$, and consists of n space-separated integers $\operatorname{arr}[i][j]$.

Constraints

- $-100 \leq \operatorname{arr}[i][j] \leq 100$

Output Format

Return the absolute difference between the sums of the matrix's two diagonals as a single integer.

Sample Input

```
3
1124
456
10 8-12
```


Sample Output

Explanation

The primary diagonal is:

```
1 1
    5
        -12
```

Sum across the primary diagonal: $11+5-12=4$
The secondary diagonal is:

```
            4
    5
10
```

Sum across the secondary diagonal: $4+5+10=19$
Difference: |4-19| = 15
Note: $|x|$ is the absolute value of x

