Tim likes Math. He likes it so much that he always brings his tablets with him and reads math e-books everywhere, even during parties.

Tim found an interesting exercise in one of the e-books he is reading. But you want him to join the party, so you decide to answer the question for him.

The problem is: Given D and P, how many ordered pairs of integers are there whose absolute difference is D and whose product is P ? In other words, how many pairs of integers (A, B) are there such that:

$$
\begin{gathered}
|A-B|=D \\
A \times B=P
\end{gathered}
$$

Input Format

The first line of input contains T, the number of test cases. The next T lines describe the test cases.
Each test case consists of a single line containing two integers D and P separated by a single space.

Output Format

For each test case, output a single line containing a single integer which is the answer for that test case.

Constraints

$1 \leq T \leq 20000$
$|D| \leq 10^{9}$
$|P| \leq 10^{9}$

Sample Input

```
3
1 2
0 4
-1 1
```


Sample Output

```
4
2
0
```


Explanation

Case 1: There are four pairs of integers with absolute difference 1 and product 2 , namely $(1,2),(2,1)$, $(-1,-2),(-2,-1)$.

Case 2: There are two pairs of integers with absolute difference 0 and product 4 , namely (2,2), $(-2,-2)$.

Case 3: There are no pairs of integers with absolute difference -1 , because the absolute value is never negative.

