Given an integer, $n$, find the smallest integer $m$ such that $m$ is divisible by $n$ (i.e., $n$ is a factor of $m$ ) and satisfies the following properties:

- $m$ must not contain zeroes in its decimal representation.
- The sum of $m$ 's digits must be greater than or equal to the product of $m$ 's digits.

Given $n$, find $m$ and print the number of digits in $m$ 's decimal representation.

## Input Format

A single integer denoting $n$.

## Constraints

- $1 \leq n \leq 3 \times 10^{4}$
- $n$ is not divisible by 10 .


## Time Limits

- The time limits for this challenge are available here.


## Output Format

Print the number of digits in the decimal representation of the smallest possible $m$.

## Sample Input 0

1

## Sample Output 0

1

## Explanation 0

$m=1$ is evenly divided by $n=1$, doesn't contain any zeroes in its decimal representation, and the sum of its digits is not less than the product of its digits. Thus, we print the number of digits in $m=1$ (which also happens to be 1) as our answer.

## Sample Input 1

9

## Sample Output 1

## Explanation 1

$m=9$ is evenly divided by $n=9$, doesn't contain any zeroes in its decimal representation, and the sum of its digits is not less than the product of its digits. Thus, we print the number of digits in $m=9$, which is 1 , as our answer.

