You are given q queries where each query is in the form of two integers, m and a, such that:

$$
n=\prod_{i=1}^{m} p_{i}^{a+i}, \text { where } p_{i} \text { is the } i^{\text {th }} \text { prime. }
$$

For each query, find the following value:

$$
\text { result }=\sum_{x \mid n} \sigma_{1}(x)
$$

where $x \mid n$ denotes that each x is a divisor of n and $\sigma_{1}(x)$ is the sum of the divisors of x. Then print the value of result $\bmod \left(10^{9}+7\right)$ on a new line.

Input Format

The first line contains an integer, q, denoting the number of queries.
Each line i of the q subsequent lines contains two space-separated integers describing the respective values of m_{i} and a_{i} for query i.

Constraints

- $1 \leq q \leq 50$
- $1 \leq m \leq 10^{5}$
- $0 \leq a \leq 10^{5}$

Output Format

For each query, print a single integer denoting the value of result $\bmod \left(10^{9}+7\right)$ on a new line.

Sample Input 0

```
3
20
30
24
```


Sample Output 0

```
7 2
13968
196320
```


Explanation 0

For the first query, we are given $m=2$ and $a=0$. Recall that the sequence of prime numbers is $p=\{2,3,5,7,11,13, \ldots\}$. We use $p_{1}=2$ and $p_{2}=3$ to calculate

The divisors of $n=18$ are $\{1,2,3,6,9,18\}$. We then use them to calculate the following:

$$
\begin{aligned}
\text { result } & =\sigma_{1}(1)+\sigma_{1}(2)+\sigma_{1}(3)+\sigma_{1}(6)+\sigma_{1}(9)+\sigma_{1}(18) \\
& \Rightarrow 1+(1+2)+(1+3)+(1+2+3+6)+(1+3+9)+(1+2+3+6+9+18) \\
& \Rightarrow 1+3+4+12+13+39 \\
& \Rightarrow 72
\end{aligned}
$$

Finally, we print the value of result $\bmod \left(10^{9}+7\right)=72 \bmod \left(10^{9}+7\right)=72$ on a new line. We then follow the same process to answer the second and third queries.

