You are given D datasets where each dataset is in the form of two integers, m and a, such that:

$$
n=\prod_{i=1}^{m} p_{i}^{a+i}, \text { where } p_{i} \text { is the } i^{\text {th }} \text { prime. }
$$

For each dataset, find and print the following on a new line:

$$
\sum_{d \mid n} \sigma_{0}(d)
$$

where $\sigma_{0}(x)$ is the count of divisors of x. As the answer can be quite large, print the result of this value modulo $\left(10^{9}+7\right)$.

Input Format

The first line contains an integer, D, denoting the number of datasets.
Each line i of the D subsequent lines contains two space-separated integers describing the respective values of m_{i} and a_{i} for dataset i.

Constraints

- $1 \leq D \leq 10^{5}$
- $1 \leq m \leq 10^{5}$
- $0 \leq a \leq 10^{5}$

Output Format

For each dataset, print a single integer denoting the result of the summation above modulo $\left(10^{9}+7\right)$ on a new line.

Sample Input

```
3
20
30
24
```


Sample Output

```
18
180
588
```


Explanation

For the first dataset where $m=2$ and $a=0$,

$$
\begin{aligned}
n & =2^{1} \times 3^{2} \\
& \Rightarrow 2 \times 9 \\
& \Rightarrow 18
\end{aligned}
$$

18 has the following divisors: $\{1,2,3,6,9,18\}$. Therefore, the result is:

$$
\begin{aligned}
& \sigma_{0}(1)+\sigma_{0}(2)+\sigma_{0}(3)+\sigma_{0}(6)+\sigma_{0}(9)+\sigma_{0}(18) \\
\Rightarrow & 1+2+2+4+3+6 \\
\Rightarrow & 18
\end{aligned}
$$

Thus we print the value of $18 \%\left(10^{9}+7\right)=18$ on a new line.

