Divisor Exploration

You are given D datasets where each dataset is in the form of two integers, m and a, such that:

$$n = \prod_{i=1}^m p_i^{a+i}, ext{ where } p_i ext{ is the } i^{th} ext{ prime.}$$

For each dataset, find and print the following on a new line:

$$\sum_{d|n} \sigma_0(d)$$

where $\sigma_0(x)$ is the count of divisors of x. As the answer can be quite large, print the result of this value modulo $(10^9 + 7)$.

Input Format

The first line contains an integer, D, denoting the number of datasets.

Each line i of the D subsequent lines contains two space-separated integers describing the respective values of m_i and a_i for dataset i.

Constraints

- $1 \le D \le 10^5$
- $1 \leq m \leq 10^5$
- $0 \le a \le 10^5$

Output Format

For each dataset, print a single integer denoting the result of the summation above modulo $(10^9 + 7)$ on a new line.

Sample Input

3	
2 0	
3 0	
2 4	

Sample Output

18 180 588

Explanation

For the first dataset where m=2 and a=0,

$$egin{aligned} n &= 2^1 imes 3^2 \ &\Rightarrow 2 imes 9 \ &\Rightarrow 18 \end{aligned}$$

18 has the following divisors: $\{1,2,3,6,9,18\}.$ Therefore, the result is:

$$\sigma_0(1) + \sigma_0(2) + \sigma_0(3) + \sigma_0(6) + \sigma_0(9) + \sigma_0(18)$$

 $\Rightarrow 1 + 2 + 2 + 4 + 3 + 6$
 $\Rightarrow 18$

Thus we print the value of $18~\%~(10^9+7)=18$ on a new line.