Mr. Dorsey Dawson recently stole X grams of gold from ACME Jewellers. He is now on a train back home. To avoid getting caught by the police, he has to convert all the gold he has into paper money. He turns into a salesman and starts selling the gold in the train.

There are N passengers who have shown interest in buying the gold. The $i^{t h}$ passenger agrees to buy a_{i} grams of gold by paying v_{i} dollars. Dawson wants to escape from the police and also maximize the profit. Can you help him maximize the profit?

Note: The $i^{\text {th }}$ passenger would buy exactly a_{i} grams if the transaction is successful.

Input Format

The first line contains two space separated integers, N and X, where N is the number of passengers who agreed to buy and X is the stolen amount of gold (in grams).
N lines follow. Each line contains two space separated integers $-v_{i}$ and a_{i}, where v_{i} is the the value which the $i^{t h}$ passenger has agreed to pay in exchange for a_{i} grams of gold.

Constraints

- $1 \leq X \leq 5000$
- $1 \leq N \leq 10^{6}$
- all v_{i} 's and a_{i} 's are less than or equal to 10^{6} and greater than 0 .

Output Format

If it's possible for Dorsey to escape, print the maximum profit he can enjoy, otherwise print Got caught!.

Sample Input 0

```
410
460 4
5906
5505
5905
```


Sample Output 0

1140

Explanation 0

Selling it to passengers buying 4 grams and 6 grams would lead to 1050 dollars whereas selling it to passengers buying 5 grams gold would lead to 1140 dollars. Hence the answer.

Sample Input 1

Sample Output 1

Got caught!

Explanation 1

There is no way to sell all 9 grams of gold.

