HackerRank is starting a bus service in MountainView, California. The bus starts at time $\mathrm{T}=0$ at station and goes through station ${ }_{2}$, station $_{3}$, station $_{4}$ in that order and reaches the headquarters located at station $_{n}$. At every station, the bus waits for various commuters to arrive before it departs to the next station. Ignoring the acceleration, the bus moves at 1 meter / second. i.e., if station ${ }_{i}$ and station $_{j}$ are 1000 meters apart, the bus takes 1000 seconds to travel from station ${ }_{i}$ to station $_{j}$.

The bus is equipped with \mathbf{K} units of Nitro $\left(\mathrm{N}_{2} \mathrm{O}\right)$. If going from station ${ }_{i}$ to station n_{j} takes x seconds, then using t units of nitro can decrease the time taken to max $(x-t, 0)$ seconds where max (a, b) denotes the greater of the two values between $a \& b$. The Nitro can be used all at once or in multiples of 1 unit.

If the bus driver travels optimally, what is the minimum sum of travelling time for all commuters? The travelling time equals to the time he/she arrived at the destination minus the time he/she arrived the start station.

Please remember that the driver must take all passengers to their destination.

Input Format

The first line contains 3 space separated integers n, m and K which indicate the number of stations, total number of people who board the bus at various stations and the total units of Nitro ($\mathrm{N}_{2} \mathrm{O}$) present in the bus.

The second line contains $n-1$ space separated integers where the $\mathrm{i}^{\text {th }}$ integer indicates the distance between station $_{(i-1)}$ to station ${ }_{i}$.
m lines follow each containing 3 space separated integers. The $i{ }^{\text {th }}$ line contains t_{i}, s_{i} and e_{i} in that order indicating the arrival time of the commuter at s_{i} at time t_{i} with his destination being e_{i}.

```
n m K
d1 d2 ... dn-1 // di: the distance between station_i to station_(i+1).
t1 s1 e1 // commuter 1 arrives at his boarding point at s\overline{1}}\mathrm{ and his destination is el
t2 s2 e2
...
tm sm em
```


Constraints

$$
\begin{aligned}
& 0<\mathrm{n}<=100000 \\
& 0<\mathrm{m}<=100000 \\
& 0<=\mathrm{K}<=10000000 \\
& 0<\mathrm{d}_{\mathrm{i}}<=100 \\
& 0<=\mathrm{t}_{\mathrm{i}}<=10000000 \\
& 1<=\mathrm{s}_{\mathrm{i}}<\mathrm{e}_{\mathrm{i}}<=\mathrm{n}
\end{aligned}
$$

Output Format

The minimal total travel time.

Sample Input

```
3 3 2
14
1 1 3
2 1 2
5 2 3
```


Sample Output

9

Explanation

The bus waits for the $1^{\text {st }}$ and the $2^{\text {nd }}$ commuter to arrive at station ${ }_{1}$ and travels to station ${ }_{2}$ carrying 2 passengers. The travel time from station n_{1} to station n_{2} is 1 second. It then waits for the $3^{\text {rd }}$ commuter to board the bus at time $=5,2^{\text {nd }}$ commuter deboards the bus. The $3^{\text {rd }}$ commuter boards the bus at $t=5$. The bus now uses 2 units of nitro, this reduces the commute time to travel to station ${ }_{3}$ from 4 to 2 .

Hence, the total time spent by each of the passengers on the bus is

1. 1 (time spent waiting for commuter 2) +1 (travel time from station to station $_{2}$) +2 (time spent waiting for commuter 3$)+2\left(\right.$ travel time from station 2 to station $\left.{ }_{3}\right)=6$
2. 1 (travel time from station to $_{1}$ station $)_{2}$
3. 2 (travel time from station to station $_{3}$)

$$
6+1+2=9
$$

hence the answer.

Timelimits

Timelimits for this challenge can be seen here

