Euler's Criterion

Your friend gives you an equation $A \equiv X^{2}(\bmod M)$ and asks you to find an integer solution for X. However, you know your friend's mischievous nature and suspect that there is no solution to such an equation. Thus, you first want to find out whether there is a solution to it.

You may find this link helpful: http://mathworld.wolfram.com/EulersCriterion.html

Input Format

The first line contains the number of cases, T. T lines follow, each containing two integers A and M separated by a single space.

Constraints

- $0<T \leq 10^{5}$
- $2 \leq M<10^{9}, M$ is prime
- $0 \leq A<M$

Output Format

Output T lines, each containing one word: Yes, if a solution exists and no otherwise.

Sample Input

```
2
5
47
```


Sample Output

NO
YES

Explanation

In the second test case, we can take $X=2$, as $4 \equiv 2^{2}(\bmod 7)$. Or we can take $X=5$, as $5^{2}=25 \equiv 4(\bmod 7)$.

However there is no integer which gives 5 modulo 7 when squared.

