HackerRank

Extremum Permutations

Let's consider a permutation $P = \{p_1, p_2, ..., p_N\}$ of the set of $N = \{1, 2, 3, ..., N\}$ elements.

P is called a magic set if it satisfies both of the following constraints:

- Given a set of *K* integers, the elements in positions $a_1, a_2, ..., a_K$ are less than their adjacent elements, i.e., $p_{a_i-1} > p_{a_i} < p_{a_i+1}$
- Given a set of *L* integers, elements in positions b_1 , b_2 , ..., b_L are greater than their adjacent elements, i.e., $p_{b_i-1} < p_{b_i} > p_{b_i+1}$

How many such magic sets are there?

Input Format

The first line of input contains three integers N, K, L separated by a single space. The second line contains K integers, a_1 , a_2 , ... a_K each separated by single space. the third line contains L integers, b_1 , b_2 , ... b_L each separated by single space.

Output Format

Output the answer modulo $100000007 (10^9+7)$.

Constraints

 $3 \le N \le 5000$ $1 \le K, L \le 5000$ $2 \le a_i, b_j \le N-1$, where $i \in [1, K]$ AND $j \in [1, L]$

Sample Input #00

Sample Output #00

5

Explanation #00

Here, N = 4 a_1 = 2 and b_1 = 3. The 5 permutations of {1,2,3,4} that satisfy the condition are

- 2143
- 3241
- 4 2 3 1
- 3142
- 4132

Sample Input #01

10 2 2 2 4 3 9

Sample Output #01

161280