Fair Cut

Li and Lu have n integers, $a_{1}, a_{2}, \ldots, a_{n}$, that they want to divide fairly between the two of them. They decide that if Li gets integers with indices $I=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$ (which implies that Lu gets integers with indices $J=\{1, \ldots, n\} \backslash I$), then the measure of unfairness of this division is:

$$
f(I)=\sum_{i \in I} \sum_{j \in J}\left|a_{i}-a_{j}\right|
$$

Find the minimum measure of unfairness that can be obtained with some division of the set of integers where Li gets exactly k integers.

Note $A \backslash B$ means Set complement

Input Format

The first line contains two space-separated integers denoting the respective values of n (the number of integers Li and Lu have) and k (the number of integers Li wants).
The second line contains n space-separated integers describing the respective values of $a_{1}, a_{2}, \ldots, a_{n}$.

Constraints

- $1 \leq k<n \leq 3000$
- $1 \leq a_{i} \leq 10^{9}$
- For 15% of the test cases, $n \leq 20$.
- For 45% of the test cases, $n \leq 40$.

Output Format

Print a single integer denoting the minimum measure of unfairness of some division where Li gets k integers.

Sample Input 0

```
4 2
4 3 2
```


Sample Output 0

Explanation 0

One possible solution for this input is $I=\{2,4\} ; J=\{1,3\}$.
$\left|a_{2}-a_{1}\right|+\left|a_{2}-a_{3}\right|+\left|a_{4}-a_{1}\right|+\left|a_{4}-a_{3}\right|=1+2+2+1=6$

Sample Input 1

Sample Output 1

2

Explanation 1

The following division of numbers is optimal for this input: $I=\{1\} ; J=\{2,3,4\}$.

