Fairy Chess

Let's play Fairy Chess!

You have an $n \times n$ chessboard. An s-leaper is a chess piece which can move from some square (x_0, y_0) to some square (x_1, y_1) if $abs(x_0 - x_1) + abs(y_0 - y_1) \leq s$; however, its movements are restricted to $up(\uparrow)$, $down(\downarrow)$, $left(\leftarrow)$, and $right(\rightarrow)$ within the confines of the chessboard, meaning that diagonal moves are not allowed. In addition, the leaper cannot leap to any square that is occupied by a pawn.

Given the layout of the chessboard, can you determine the number of ways a leaper can move m times within the chessboard?

Note: abs(x) refers to the absolute value of some integer, x.

Input Format

The first line contains an integer, q_i denoting the number of queries. Each query is described as follows:

- 1. The first line contains three space-separated integers denoting n, m, and s, respectively.
- 2. Each line i of the n subsequent lines contains n characters. The j^{th} character in the i^{th} line describes the contents of square (i,j) according to the following key:
 - . indicates the location is *empty*.
 - P indicates the location is occupied by a pawn.
 - L indicates the location of the *leaper*.

Constraints

- $1 \le q \le 10$
- 1 < m < 200
- There will be exactly one **L** character on the chessboard.
- The *s*-leaper can move $up(\uparrow)$, $down(\downarrow)$, $left(\leftarrow)$, and $right(\rightarrow)$ within the confines of the chessboard. It *cannot* move diagonally.

Output Format

For each query, print the number of ways the leaper can make m moves on a new line. Because this value can be quite large, your answer must be modulo $10^9 + 7$.

Sample Input 0

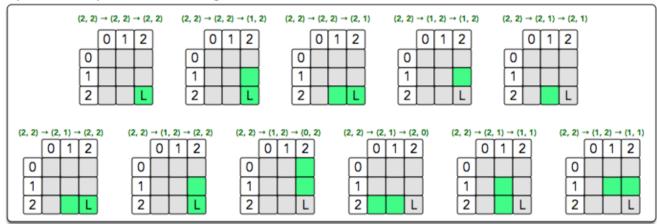
```
3
4 1 1
....
.L..
.P..
....
3 2 1
```

```
...
..L
4 3 2
....
..L
..P.
P...
```

Sample Output 0

```
4
11
385
```

Explanation 0


You must perform two queries, outlined below. The *green* cells denote a cell that was leaped to by the leaper, and coordinates are defined as (row, column).

1. The leaper can leap to the following locations:

	(1, 1) → (1, 1)					(1, 1) → (1, 0)						(1, 1) → (0, 1)						(1, 1) → (1, 2)					
	0	1	2	3			0	1	2	3)		0	1	2	3			0	1	2	3	
0						0						0						0					
1		L				1		L				1		L				1		L			
2		Р				2		Р				2		Р				2		Р			
3						3						3						3					

Observe that the leaper cannot leap to the square directly underneath it because it's occupied by a pawn. Thus, there are $\bf 4$ ways to make $\bf 1$ move and we print $\bf 4$ on a new line.

2. The leaper can leap to the following locations:

Thus, we print 11 on a new line.

Note: Don't forget that your answer must be modulo $10^9 + 7$.