Favorite sequence

Johnny, like every mathematician, has his favorite sequence of distinct natural numbers. Let's call this sequence M. Johnny was very bored, so he wrote down N copies of the sequence M in his big notebook. One day, when Johnny was out, his little sister Mary erased some numbers(possibly zero) from every copy of M and then threw the notebook out onto the street. You just found it. Can you reconstruct the sequence?

In the input there are N sequences of natural numbers representing the N copies of the sequence M after Mary's prank. In each of them all numbers are distinct. Your task is to construct the shortest sequence S that might have been the original M. If there are many such sequences, return the lexicographically smallest one. It is guaranteed that such a sequence exists.

Note

Sequence $A[1 \ldots n]$ is lexicographically less than sequence $B[1 \ldots n]$ if and only if there exists $1 \leq i \leq n$ such that for all $1 \leq j<i, A[j]=B[j]$ and $A[i]<B[i]$.

Input Format

In the first line, there is one number N denoting the number of copies of M.
This is followed by K
and in next line a sequence of length K representing one of sequences after Mary's prank. All numbers are separated by a single space.

Constraints

$1 \leq N \leq 10^{3}$
$2 \leq K \leq 10^{3}$
All values in one sequence are distinct numbers in range $\left[1,10^{6}\right]$.

Output Format

In one line, write the space-separated sequence S - the shortest sequence that might have been the original M. If there are many such sequences, return the lexicographically smallest one.

Sample Input

```
2
1 3
3
34
```


Sample Output

```
1 2 3 4
```


Explanation

You have 2 copies of the sequence with some missing numbers: $[1,3]$ and $[2,3,4]$. There are two candidates for the original sequence $M:[1,2,3,4]$ and $[2,1,3,4]$, where the first one is lexicographically least.

