You're given three numbers: A, B, and N, and all you have to do is to find the number F_{N} where

$$
\begin{gathered}
F_{0}=A \\
F_{1}=B \\
F_{i}=F_{i-1}+F_{i-2} \text { for } i \geq 2
\end{gathered}
$$

As the number can be very large, output it modulo $10^{9}+7$.
Consider the following link: http://en.wikipedia.org/wiki/Fibonacci_number\#Matrix_form

Input Format

First line contains a single integer T - the number of tests. T lines follow, each containing three integers: A, B and N.

Constraints

$1 \leq T \leq 1000$
$1 \leq A, B, N \leq 10^{9}$

Output Format

For each test case output a single integer ${ }^{-} F_{N}$.

Sample Input

```
8
2 1
9 1 7
9 8 3
249
172
1 8 1
4 3 1
7 5
```


Sample Output

[^0]
Explanation

First test case is obvious.
Let's look through the second one:
$F_{0}=9$
$F_{1}=1$
$F_{2}=1+9=10$
$F_{3}=10+1=11$
$F_{4}=11+10=21$
$F_{5}=21+11=32$
$F_{6}=32+21=53$
$F_{7}=53+32=85$

[^0]: 3
 85
 25
 178
 8
 8
 3
 44

