Fibonacci numbers have the following form:

$$
\begin{gathered}
F_{1}=1 \\
F_{2}=1 \\
F_{3}=2 \\
\vdots \\
F_{n}=F_{n-2}+F_{n-1}
\end{gathered}
$$

We have an array $a_{1}, a_{2}, \ldots, a_{N}$ which contains N elements.
We want to find $\operatorname{gcd}\left(F_{a_{1}}, F_{a_{2}}, F_{a_{3}}, \cdots, F_{a_{N}}\right)$.

Input Format

The first line contains N, where N denotes size of the array.
Each of the next N lines contains a number: the $i^{\text {th }}$ line contains a_{i}.

Output Format

Print a single integer - the remainder of the division of the resulting number by $10^{9}+7$.

Constraints

$1 \leq N \leq 2 \times 10^{5}$
$1 \leq a_{i} \leq 10^{12}$

Sample Input 1

```
3
2
3
5
```


Sample Output 1

1

Explanation 1

$F_{2}=1$
$F_{3}=2$
$F_{5}=5$
$\operatorname{gcd}(1,2,5)=1$

Sample Input 2

2
3
6

Sample Output 2

Explanation 2

$F_{3}=2$
$F_{6}=8$
$\operatorname{gcd}(2,8)=2$

