# Fibonacci Modified



Implement a *modified* Fibonacci sequence using the following definition:

Given terms t[i] and t[i+1] where  $i\in(1,\infty)$ , term t[i+2] is computed as:

$$t_{i+2} = t_i + (t_{i+1})^2$$

Given three integers, t1, t2, and n, compute and print the  $n^{th}$  term of a modified Fibonacci sequence.

#### Example

$$t1 = 0$$

$$t2 = 1$$

$$n=6$$

• 
$$t3 = 0 + 1^2 = 1$$

• 
$$t4 = 1 + 1^2 = 2$$

• 
$$t5 = 1 + 2^2 = 5$$

• 
$$t6 = 2 + 5^2 = 27$$

Return 27.

### **Function Description**

Complete the  $\it fibonacci Modified$  function in the editor below. It must return the  $\it n^{th}$  number in the sequence.

fibonacciModified has the following parameter(s):

- int t1: an integer
- int t2: an integer
- *int n*: the iteration to report

#### **Returns**

ullet int: the  $n^{th}$  number in the sequence

**Note:** The value of t[n] may far exceed the range of a 64-bit integer. Many submission languages have libraries that can handle such large results but, for those that don't (e.g., C++), you will need to compensate for the size of the result.

# **Input Format**

A single line of three space-separated integers, the values of t1, t2, and n.

#### Constraints

- $0 \le t1, t2 \le 2$
- $3 \le n \le 20$
- ullet  $t_n$  may far exceed the range of a 64-bit integer.

#### **Sample Input**

0 1 5

## **Sample Output**

5

## **Explanation**

The first two terms of the sequence are t1=0 and t2=1, which gives us a modified Fibonacci sequence of  $\{0,1,1,2,5,27,\ldots\}$ . The  $5^{th}$  term is 5.