Shashank loves trees and math. He has a rooted tree, T, consisting of N nodes uniquely labeled with integers in the inclusive range $[1, N]$. The node labeled as 1 is the root node of tree T, and each node in T is associated with some positive integer value (all values are initially 0).

Let's define F_{k} as the $k^{t h}$ Fibonacci number. Shashank wants to perform 2 types of operations over his tree, T :

1. $U X k$

Update the subtree rooted at node X such that the node at level 0 in subtree X (i.e., node X) will have F_{k} added to it, all the nodes at level 1 will have F_{k+1} added to them, and so on. More formally, all the nodes at a distance D from node X in the subtree of node X will have the $(k+D)^{t h}$ Fibonacci number added to them.
2. $Q X Y$

Find the sum of all values associated with the nodes on the unique path from X to Y. Print your sum modulo $10^{9}+7$ on a new line.

Given the configuration for tree T and a list of M operations, perform all the operations efficiently.
Note: $F_{1}=F_{2}=1$.

Input Format

The first line contains 2 space-separated integers, N (the number of nodes in tree T) and M (the number of operations to be processed), respectively.
Each line i of the $N-1$ subsequent lines contains an integer, P, denoting the parent of the $(i+1)^{\text {th }}$ node.
Each of the M subsequent lines contains one of the two types of operations mentioned in the Problem Statement above.

Constraints

- $1 \leq N, M \leq 10^{5}$
- $1 \leq X, Y \leq N$
- $1 \leq k \leq 10^{15}$

Output Format

For each operation of type 2 (i.e., Q), print the required answer modulo $10^{9}+7$ on a new line.

Sample Input

1

```
L
```


Sample Output

Explanation

Intially, the tree looks like this:

After update operation 1 1, it looks like this:

After update operation 2 2, it looks like this:

