Filling Jars

Animesh has n empty candy jars, numbered from 1 to n, with infinite capacity. He performs m operations. Each operation is described by 3 integers, a, b, and k. Here, a and b are indices of the jars, and k is the number of candies to be added inside each jar whose index lies between a and b (both inclusive). Can you tell the average number of candies after m operations?

Example

$n=5$
operations $=[[1,2,10],[3,5,10]]$
The array has 5 elements that all start at 0 . In the first operation, add 10 to the first 2 elements. Now the array is $[10,10,0,0,0]$. In the second operation, add 10 to the last 3 elements ($3-5$). Now the array is $[10,10,10,10,10]$ and the average is 10 . Sincd 10 is already an integer value, it does not need to be rounded.

Function Description

Complete the solve function in the editor below.
solve has the following parameters:

- int n : the number of candy jars
- int operations[m][3]: a 2-dimensional array of operations

Returns

- int: the floor of the average number of canidies in all jars

Input Format

The first line contains two integers, n and m, separated by a single space. m lines follow. Each of them contains three integers, a, b, and k, separated by spaces.

Constraints

$3 \leq n \leq 10^{7}$
$1 \leq m \leq 10^{5}$
$1 \leq a \leq b \leq N$
$0 \leq k \leq 10^{6}$

Sample Input

$\mathrm{n}=5$, operations[] size $=3$
operations $=[[1,2,100],[2,5,100],[3,4,100]]$

Sample Output

```
1 6 0
```


Explanation

Initially each of the jars contains 0 candies
$0 \quad 0 \quad 0 \quad 0 \quad 0$

First operation:

```
100 100 0 0 0
```

Second operation:

```
100 200 100 100 100
```

Third operation:

```
100 200 200 200 100
```

Total $=800$, Average $=800 / 5=160$

