Find Digits

An integer d is a divisor of an integer n if the remainder of $n \div d=0$.
Given an integer, for each digit that makes up the integer determine whether it is a divisor. Count the number of divisors occurring within the integer.

Example

$n=124$
Check whether 1, 2 and 4 are divisors of 124 . All 3 numbers divide evenly into 124 so return 3 .
$n=111$
Check whether 1,1 , and 1 are divisors of 111 . All 3 numbers divide evenly into 111 so return 3 .
$n=10$
Check whether 1 and 0 are divisors of 10.1 is, but 0 is not. Return 1.

Function Description

Complete the findDigits function in the editor below.
findDigits has the following parameter(s):

- int n : the value to analyze

Returns

- int: the number of digits in n that are divisors of n

Input Format

The first line is an integer, t, the number of test cases.
The t subsequent lines each contain an integer, n.

Constraints

$1 \leq t \leq 15$
$0<n<10^{9}$

Sample Input

```
2
12
1012
```

Sample Output

Explanation

The number 12 is broken into two digits, 1 and 2 . When 12 is divided by either of those two digits, the remainder is 0 so they are both divisors.

The number 1012 is broken into four digits, $1,0,1$, and 2.1012 is evenly divisible by its digits 1 , 1 , and 2 , but it is not divisible by 0 as division by zero is undefined.

