Find Maximum Index Product

You are given a list of N numbers $a_{1}, a_{2}, \ldots, a_{n}$. For each element at position $i(1 \leq i \leq N)$, we define $L e f t(i)$ and $\operatorname{Right}(i)$ as:
$\operatorname{Left}(i)=$ closest index j such that $\mathrm{j}<\mathrm{i}$ and $a_{j}>a_{i}$. If no such j exists then $\operatorname{Left}(i)=0$.
$\operatorname{Right}(i)=$ closest index k such that $\mathrm{k}>\mathrm{i}$ and $a_{k}>a_{i}$. If no such k exists then $\operatorname{Right}(i)=0$.
We define $\operatorname{IndexProduct}(i)=\operatorname{Left}(i) * \operatorname{Right}(i)$. You need to find out the maximum IndexProduct(i) among all i.

Input Format

The first line contains an integer N, the number of integers. The next line contains the N integers describing the list $\mathrm{a}[1 . \mathrm{N}]$.

Constraints

$1 \leq N \leq 10^{5}$
$1 \leq a_{i} \leq 10^{9}$

Output Format

Output the maximum Index Product among all indices from 1 to N.

Sample Input

```
5
544 3 4 5
```


Sample Output

Explanation

We can compute the following:
IndexProduct(1) $=0$
IndexProduct(2) $=1 \times 5=5$
IndexProduct(3) $=2 \times 4=8$
IndexProduct(4) $=1 \times 5=5$
IndexProduct(5) $=0$
The largest of these is 8 , so it is the answer.

