Find the Point

Consider two points, $p=\left(p_{x}, p_{y}\right)$ and $q=\left(q_{x}, q_{y}\right)$. We consider the inversion or point reflection, $r=\left(r_{x}, r_{y}\right)$, of point p across point q to be a 180° rotation of point p around q.

Given n sets of points p and q, find r for each pair of points and print two space-separated integers denoting the respective values of r_{x} and r_{y} on a new line.

Function Description

Complete the findPoint function in the editor below.
findPoint has the following parameters:

- int $p x, p y, q x, q y: x$ and y coordinates for points p and q

Returns

- int[2]: x and y coordinates of the reflected point r

Input Format

The first line contains an integer, n, denoting the number of sets of points.
Each of the n subsequent lines contains four space-separated integers that describe the respective values of p_{x}, p_{y}, q_{x}, and q_{y} defining points $p=\left(p_{x}, p_{y}\right)$ and $q=\left(q_{x}, q_{y}\right)$.

Constraints

- $1 \leq n \leq 15$
- $-100 \leq p_{x}, p_{y}, q_{x}, q_{y} \leq 100$

Sample Input

```
0 0 1 1
1122
```


Sample Output

```
    2 2
```

 33

Explanation

The graphs below depict points p, q, and r for the $n=2$ points given as Sample Input:

2.

