Find Strings

A substring is defined as a contiguous sequence of one or more characters in the string. More information on substrings can be found here.

You are given n strings $w[1], w[2], \ldots . ., w[n]$. Let $S[i]$ denote the set of all distinct substrings of the string $\mathrm{w}[\mathrm{i}]$. Let $S=\{S[1] \cup S[2] \cup \ldots S[n]\}$, that is, S is a set of strings that is the union of all substrings in all sets $S[1], S[2], \ldots . S[n]$. There will be many queries. For each query you will be given an integer ' k '. Your task is to find the $k^{\text {th }}$ element of the 1-indexed lexicographically ordered set of substrings in the set S. If there is no element k, return INVALID.

For example, your strings are $w=[a b c, c d e]$. All of the substrings are $S[1]=\{a, b, c, a b, b c, a b c\}$ and $S[2]=\{c, d, e, c d, d e, c d e\}$. Combine the two sets and sort them to get
$S=\{a, a b, a b c, b, b c, c, c d, c d e, d, d e, e\}$. So, for instance if $k=1$, we return 'a'. If $k=5$, we return 'bc'. If $k=20$ though, there is not an $S[20]$ so we return INVALID.

Function Description

Complete the findStrings function in the editor below. It should return array of strings.
findStrings has the following parameter(s):

- w: an array of strings
- queries: an array of integers

Input Format

The first line contains an integer n, the number of strings in the array w.
Each of the next n lines consists of a string $w[i]$.
The next line contains an integer q, the number of queries.
Each of the next q lines consists of a single integer k.

Constraints

$1 \leq n \leq 50$
$1 \leq|w[i]| \leq 2000$
$1 \leq q \leq 500$
$1 \leq k \leq 10^{9}$
Each character of $w[i] \in \operatorname{ascii}[a-z]$

Output Format

Return an array of q strings where the i^{t} string is the answer to the $\mathrm{i}^{\text {th }}$ query. If a k is invalid, return "INVALID" for that case.

Sample Input

Sample Output

aab
c
INVALID

Explanation

For the sample test case, we have 2 strings "aab" and "aac".
S1 = \{"a", "aa", "aab", "ab", "b"\} . These are the 5 unique substrings of "aab".
S2 = \{"a", "aa", "aac", "ac", "c" \} . These are the 5 unique substrings of "aac".
Now, S = \{S1 U S2\} = \{"a", "aa", "aab", "aac", "ab", "ac", "b", "c"\}. Totally, 8 unique strings are present in the set S.
The lexicographically 3rd smallest string in S is "aab" and the lexicographically 8th smallest string in S is "c". Since there are only 8 distinct substrings, the answer to the last query is "INVALID".

