Find the Seed

A company needs random numbers for its operation. N random numbers have been generated using N numbers as seeds and the following recurrence formula:

$$
\begin{gathered}
F(K)=(C(1) \times F(K-1)+C(2) \times F(K-2)+\cdots+ \\
C(N-1) \times F(K-N+1)+C(N) \times F(K-N)) \%\left(10^{9}+7\right)
\end{gathered}
$$

The numbers used as seeds are $F(N-1), F(N-2), \ldots, F(1), F(0) . F(K)$ is the $K^{t h}$ term of the recurrence.

Due to a failure on the servers, the company lost its seed numbers. Now they just have the recurrence formula and the previously generated N random numbers.

The company wants to recover the numbers used as seeds, so they have hired you for doing this task.

Input Format

The first line contains two space-separated integers, N and K, respectively.
The second line contains the space-separated integers describing
$F(K), F(K-1), \ldots, F(K-N+2), F(K-N+1)$ (all these numbers are non-negative integers $\left.<10^{9}\right)$.
The third line contains the space-separated coefficients of the recurrence formula, $C(1), C(2), \ldots, C(N-1), C(N)$. All of these coefficients are positive integers $<10^{9}$.

Constraints

- $1 \leq N \leq 50$
- $1 \leq K \leq 10^{9}$
- $0 \leq K-N+1$

Output Format

The output must be one line containing the space-separated seeds of the random numbers -$F(N-1), F(N-2), \ldots, F(1), F(0)$.

Sample Input

```
2 6
13 }
1 1
```


Sample Output

```
    1 1
```


Explanation

This is the classic Fibonacci recurrence. We have the $6^{t h}$ and $5^{t h}$ terms, and, of course, the seeds are the numbers 1 and 1.

