Flatland Space
 Stations

Flatland is a country with a number of cities, some of which have space stations. Cities are numbered consecutively and each has a road of 1 km length connecting it to the next city. It is not a circular route, so the first city doesn't connect with the last city. Determine the maximum distance from any city to its nearest space station.

Example

$n=3$
$c=[1]$
There are $n=3$ cities and city 1 has a space station. They occur consecutively along a route. City 0 is $1-0=1$ unit away and city 2 is $2-1=1$ units away. City 1 is 0 units from its nearest space station as one is located there. The maximum distance is 1 .

Function Description

Complete the flatlandSpaceStations function in the editor below.
flatlandSpaceStations has the following parameter(s):

- int n : the number of cities
- int $c[m]$: the indices of cities with a space station

Returns

- int: the maximum distance any city is from a space station

Input Format

The first line consists of two space-separated integers, n and m.
The second line contains m space-separated integers, the indices of each city that has a space-station. These values are unordered and distinct.

Constraints

- $1 \leq n \leq 10^{5}$
- $1 \leq m \leq n$
- There will be at least 1 city with a space station.
- No city has more than one space station.

Output Format

Sample Input 0

Sample Output 0

2

Explanation 0

This sample corresponds to following graphic:

The distance to the nearest space station for each city is listed below:

- $c[0]$ has distance 0 km , as it contains a space station.
- $c[1]$ has distance 1 km to the space station in $c[0]$.
- $c[2]$ has distance 2 km to the space stations in $c[0]$ and $c[4]$.
- $c[3]$ has distance 1 km to the space station in $c[4]$.
- $c[4]$ has distance 0 km , as it contains a space station.

We then take $\max (0,1,2,1,0)=2$.

Sample Input 1

```
6
0 1 2 4 3 5
```


Sample Output 1

0

Explanation 1

In this sample, $n=m$ so every city has space station and we print 0 as our answer.

