You will be given a list of 32 bit unsigned integers. Flip all the bits ($1 \rightarrow 0$ and $0 \rightarrow 1$) and return the result as an unsigned integer.

Example

$n=9_{10}$
$9_{10}=1001_{2}$. We're working with 32 bits, so:
$00000000000000000000000000001001_{2}=9_{10}$
$1111111111111111111111111110110_{2}=4294967286_{10}$
Return 4294967286.

Function Description

Complete the flippingBits function in the editor below.
flippingBits has the following parameter(s):

- int n : an integer

Returns

- int: the unsigned decimal integer result

Input Format

The first line of the input contains q, the number of queries.
Each of the next q lines contain an integer, n, to process.

Constraints

$1 \leq q \leq 100$
$0 \leq n<2^{32}$

Sample Input 0

```
3
2147483647
1
0
```


Sample Output 0

```
2147483648
4294967294
4294967295
```


Explanation 0


```
10000000000000000000000000000000}\mp@subsup{2}{2}{}=21474836481
000000000000000000000000000000012 = 1 1 
11111111111111111111111111111110}\mp@subsup{2}{2}{}=42949672941
00000000000000000000000000000000}\mp@subsup{2}{2}{}=\mp@subsup{0}{10}{
1111111111111111111111111111111112 = 4294967295 10
Sample Input 1
```

2
4
123456

Sample Output 1

4294967291
4294843839

Explanation 1

$00000000000000000000000000000100_{2}=4_{10}$
$11111111111111111111111111111011_{2}=4294967291_{10}$
$00000000000000011110001001000000_{2}=123456_{10}$
$11111111111111100001110110111111_{2}=4294843839_{10}$

Sample Input 2

```
3
0
802743475
35601423
```


Sample Output 2

4294967295

3492223820
4259365872

Explanation 2

$00000000000000000000000000000000_{2}=0_{10}$ $11111111111111111111111111111111_{2}=4294967295_{10}$
$00101111110110001110010010110011_{2}=802743475_{10}$
$11010000001001110001101101001100_{2}=3492223820_{10}$
$00000010000111110011110000001111_{2}=35601423_{10}$
$11111101111000001100001111110000_{2}=4259365872_{10}$

