Functional Palindromes

HackerRank

Let's define a function, f, on a string, p, of length l as follows:

 $f(p)=(p_1\cdot a^{l-1}+p_2\cdot a^{l-2}+\cdots+p_l\cdot a^0) ext{ mod } m$

where p_i denotes the ASCII value of the i^{th} character in string p, a = 100001, and $m = 10^9 + 7$.

Nikita has a string, s, consisting of n lowercase letters that she wants to perform q queries on. Each query consists of an integer, k, and you have to find the value of $f(w_k)$ where w_k is the k^{th} alphabetically smallest palindromic substring of s. If w_k doesn't exist, print -1 instead.

Input Format

The first line contains 2 space-separated integers describing the respective values of n (the length of string s) and q (the number of queries).

The second line contains a single string denoting s.

Each of the q subsequent lines contains a single integer denoting the value of k for a query.

Constraints

- $1 \le n,q \le 10^5$
- $1 \leq k \leq rac{n \cdot (n+1)}{2}$
- It is guaranteed that string *s* consists of lowercase English alphabetic letters only (i.e., **a** to **z**).
- $a = 10^5 + 1$
- $m = 10^9 + 7$.

Scoring

- $1 \leq n,q \leq 10^3$ for 25% of the test cases.
- $1 \leq n,q \leq 10^5$ for 100% of the test cases.

Output Format

For each query, print the value of function $f(w_k)$ where w_k is the k^{th} alphabetically smallest palindromic substring of s; if w_k doesn't exist, print -1 instead.

Sample Input

Sample Output

Explanation

There are 7 palindromic substrings of "**abcba**". Let's list them in lexicographical order and find value of w_k :

- 1. $w_1 =$ "a", $f(w_1) = 97$ 2. $w_2 =$ "a", $f(w_2) = 97$
- 3. $w_3 =$ "abcba", $f(w_3) = 696207567$
- 4. $w_4 =$ "b", $f(w_4) = 98$
- 5. $w_5 =$ "b", $f(w_5) = 98$
- 6. $w_6 =$ "bcb", $f(w_6) = 29493435$
- 7. $w_7 = "c", f(w_7) = 99$
- 8. $w_8 =$ doesn't exist, so we print -1 for k = 8.