Functional

Palindromes

Let's define a function, f, on a string, p, of length l as follows:

$$
f(p)=\left(p_{1} \cdot a^{l-1}+p_{2} \cdot a^{l-2}+\cdots+p_{l} \cdot a^{0}\right) \bmod m
$$

where p_{i} denotes the ASCII value of the $i^{t h}$ character in string $p, a=100001$, and $m=10^{9}+7$.
Nikita has a string, s, consisting of n lowercase letters that she wants to perform q queries on. Each query consists of an integer, k, and you have to find the value of $f\left(w_{k}\right)$ where w_{k} is the $k^{t h}$ alphabetically smallest palindromic substring of s. If w_{k} doesn't exist, print -1 instead.

Input Format

The first line contains 2 space-separated integers describing the respective values of n (the length of string s) and q (the number of queries).
The second line contains a single string denoting s.
Each of the q subsequent lines contains a single integer denoting the value of k for a query.

Constraints

- $1 \leq n, q \leq 10^{5}$
- $1 \leq k \leq \frac{n \cdot(n+1)}{2}$
- It is guaranteed that string s consists of lowercase English alphabetic letters only (i.e., a to \mathbf{z}).
- $a=10^{5}+1$
- $m=10^{9}+7$.

Scoring

- $1 \leq n, q \leq 10^{3}$ for 25% of the test cases.
- $1 \leq n, q \leq 10^{5}$ for 100% of the test cases.

Output Format

For each query, print the value of function $f\left(w_{k}\right)$ where w_{k} is the $k^{\text {th }}$ alphabetically smallest palindromic substring of s; if w_{k} doesn't exist, print -1 instead.

Sample Input

```
5
abcba
1
2
3
```


Sample Output

```
97
97
    696207567
    98
    29493435
    99
    -1
```


Explanation

There are 7 palindromic substrings of "abcba". Let's list them in lexicographical order and find value of w_{k} :

1. $w_{1}=$ "a", $f\left(w_{1}\right)=97$
2. $w_{2}=$ "a", $f\left(w_{2}\right)=97$
3. $w_{3}=$ "abcba", $f\left(w_{3}\right)=696207567$
4. $w_{4}=$ "b", $f\left(w_{4}\right)=98$
5. $w_{5}=$ "b", $f\left(w_{5}\right)=98$
6. $w_{6}=$ "bcb", $f\left(w_{6}\right)=29493435$
7. $w_{7}=" c$ ", $f\left(w_{7}\right)=99$
8. $w_{8}=$ doesn't exist, so we print -1 for $k=8$.
