The Sums of Powers

Find the number of ways that a given integer, X, can be expressed as the sum of the N^{th} power of unique, natural numbers.

Input Format

The first line contains an integer X. The second line contains an integer N.

Constraints

- $1 \le X \le 1000$
- $2 \le N \le 10$

Output Format

Output a single integer, the answer to the problem explained above.

Sample Input 0

10 2

Sample Output 0

1

Explanation 0

If X = 10 and N = 2, we need to find the number of ways that 10 can be represented as the sum of squares of unique numbers.

$10 = 1^2 + 3^2$

This is the only way in which 10 can be expressed as the sum of unique squares.

Sample Input 1

100 2

Sample Output 1

3

Explanation 1

 $100 = 10^2 = 6^2 + 8^2 = 1^2 + 3^2 + 4^2 + 5^2 + 7^2$ Sample Input 2

100 3

Sample Output 2

1

Explanation 2

100 can be expressed as the sum of the cubes of 1,2,3,4.

(1+8+27+64=100). There is no other way to express 100 as the sum of cubes.