Funny String

In this challenge, you will determine whether a string is funny or not. To determine whether a string is funny, create a copy of the string in reverse e.g. $a b c \rightarrow c b a$. Iterating through each string, compare the absolute difference in the ascii values of the characters at positions 0 and 1, 1 and 2 and so on to the end. If the list of absolute differences is the same for both strings, they are funny.

Determine whether a give string is funny. If it is, return Funny, otherwise return Not Funny.

Example

$s=$ 'lmnop'
The ordinal values of the charcters are $[108,109,110,111,112] . s_{\text {reverse }}=$ 'ponml' and the ordinals are $[112,111,110,109,108]$. The absolute differences of the adjacent elements for both strings are $[1,1,1,1]$, so the answer is Funny.

Function Description

Complete the funnyString function in the editor below.
funnyString has the following parameter(s):

- string s: a string to test

Returns

- string: either Funny or Not Funny

Input Format

The first line contains an integer q, the number of queries.
The next q lines each contain a string, s.

Constraints

- $1 \leq q \leq 10$
- $2 \leq$ length of $s \leq 10000$

Sample Input

```
STDIN Function
----- --------
2 q = 2
acxz s = 'acxz'
bcxz s = 'bcxz'
```


Sample Output

```
Funny
Not Funny
```


Explanation

Let r be the reverse of s.

Test Case 0:
$s=\mathbf{a c x z}, r=\mathbf{z x c a}$
Corresponding ASCII values of characters of the strings:
$s=[97,99,120,122]$ and $r=[122,120,99,97]$
For both the strings the adjacent difference list is [2, 21, 2].
Test Case 1:
$s=\mathrm{bcxz}, r=\mathrm{zxcb}$
Corresponding ASCII values of characters of the strings:
$s=[98,99,120,122]$ and $r=[122,120,99,98]$
The difference list for string s is $[1,21,2]$ and for string r is [2, 21, 1].

