Game of Stones

Two players called $P 1$ and $P 2$ are playing a game with a starting number of stones. Player 1 always plays first, and the two players move in alternating turns. The game's rules are as follows:

- In a single move, a player can remove either 2,3 , or 5 stones from the game board.
- If a player is unable to make a move, that player loses the game.

Given the starting number of stones, find and print the name of the winner. $P 1$ is named First and $P 2$ is named Second. Each player plays optimally, meaning they will not make a move that causes them to lose the game if a winning move exists.

For example, if $n=4, P 1$ can make the following moves:

- $P 1$ removes 2 stones leaving 2. $P 2$ will then remove 2 stones and win.
- $P 1$ removes 3 stones leaving 1. $P 2$ cannot move and loses.
$P 1$ would make the second play and win the game.

Function Description

Complete the gameOfStones function in the editor below. It should return a string, either First or second.
gameOfStones has the following parameter(s):

- n : an integer that represents the starting number of stones

Input Format

The first line contains an integer t, the number of test cases.
Each of the next t lines contains an integer n, the number of stones in a test case.

Constraints

- $1 \leq n, t \leq 100$

Output Format

On a new line for each test case, print First if the first player is the winner. Otherwise print Second.

Sample Input

Sample Output

```
Second
First
First
First
First
First
Second
First
```


Explanation

In the sample, we have $t=8$ testcases.
If $n=1, P 1$ can't make any moves and loses the game.
If $n=2, P 1$ removes 2 stones and wins the game.
If $n=3, P 1$ removes 2 stones in their first move, leaving 1 stone on the board and winning the game.
If $n=4, P 1$ removes 3 stones in their first move, leaving 1 stone on the board and winning the game.
If $n=5, P 1$ removes all 5 stones from the game board, winning the game.
If $n=6, P 1$ removes 5 stones in their first move, leaving 1 stone on the board and winning the game.
If $n=7, P 1$ can make any of the following three moves:

1. Remove 2 stones, leaving 5 stones on the board. $P 2$ then removes 5 stones, winning the game.
2. Remove 3 stones, leaving 4 stones on the board. $P 2$ then removes 3 stones, leaving 1 stone left on the board and winning the game.
3. Remove 5 stones, leaving 2 stones on the board. $P 2$ then removes the 2 remaining stones and wins the game.

All possible moves result in $P 2$ winning.
If $n=10, P 1$ can remove either 2 or 3 stones to win the game.

