Game of Two Stacks

Alexa has two stacks of non-negative integers, stack $a[n]$ and stack $b[m]$ where index 0 denotes the top of the stack. Alexa challenges Nick to play the following game:

- In each move, Nick can remove one integer from the top of either stack a or stack b.
- Nick keeps a running sum of the integers he removes from the two stacks.
- Nick is disqualified from the game if, at any point, his running sum becomes greater than some integer maxSum given at the beginning of the game.
- Nick's final score is the total number of integers he has removed from the two stacks.

Given a, b, and $m a x S u m$ for g games, find the maximum possible score Nick can achieve.

Example

$a=[1,2,3,4,5]$
$b=[6,7,8,9]$
The maximum number of values Nick can remove is 4 . There are two sets of choices with this result.

1. Remove $1,2,3,4$ from a with a sum of 10 .
2. Remove $1,2,3$ from a and 6 from b with a sum of 12 .

Function Description

Complete the twoStacks function in the editor below.
twoStacks has the following parameters: - int maxSum: the maximum allowed sum

- int $a[n]$: the first stack
- int $b[m]$: the second stack

Returns

- int: the maximum number of selections Nick can make

Input Format

The first line contains an integer, g (the number of games). The $3 \cdot g$ subsequent lines describe each game in the following format:

1. The first line contains three space-separated integers describing the respective values of n (the number of integers in stack a), m (the number of integers in stack b), and maxSum (the number that the sum of the integers removed from the two stacks cannot exceed).
2. The second line contains n space-separated integers, the respective values of $a[i]$.
3. The third line contains m space-separated integers, the respective values of $b[i]$.

Constraints

- $1 \leq g \leq 50$
- $1 \leq n, m \leq 10^{5}$
- $0 \leq a[i], b[i] \leq 10^{6}$
- $1 \leq \operatorname{maxSum} \leq 10^{9}$

Subtasks

- $1 \leq n, m, \leq 100$ for 50% of the maximum score.

Sample Input 0

```
1
5410
4 2461
2 8 5
```


Sample Output 0

4

Explanation 0

The two stacks initially look like this:

The image below depicts the integers Nick should choose to remove from the stacks. We print 4 as our answer, because that is the maximum number of integers that can be removed from the two stacks without the sum exceeding $x=10$.

(There can be multiple ways to remove the integers from the stack, the image shows just one of them.)

