GCD Matrix

Alex has two arrays defined as $A=\left[a_{0}, a_{1}, \ldots, a_{n-1}\right]$ and $B=\left[b_{0}, b_{1}, \ldots, b_{m-1}\right]$. He created an $n \times m$ matrix, M, where $M_{i, j}=\operatorname{gcd}\left(a_{i}, b_{j}\right)$ for each i, j in M. Recall that $\operatorname{gcd}(a, b)$ is the greatest common divisor of a and b.

For example, if $A=[2,3]$ and $B=[5,6]$, he builds $M=[[1,2],[1,3]]$ like so:

(i, j)	0	- 1
0	$\operatorname{gcd}(2,5)$	$5)=1 \operatorname{ccd}(2,6)=2$
1	$\operatorname{gcd}(3,5)$	$5)=1 \operatorname{ccd}(3,6)=3$

Alex's friend Kiara loves matrices, so he gives her q questions about matrix M where each question is in the form of some submatrix of M with its upper-left corner at $M_{r_{1}, c_{1}}$ and its bottom-right corner at $M_{r_{2}, c_{2}}$. For each question, find and print the number of distinct integers in the given submatrix on a new line.

Input Format

The first line contains three space-separated integers describing the respective values of n (the size of array A), m (the size of array B), and q (Alex's number of questions).
The second line contains n space-separated integers describing $a_{0}, a_{1}, \ldots, a_{n-1}$.
The third line contains m space-separated integers describing $b_{0}, b_{1}, \ldots, b_{m-1}$.
Each line i of the q subsequent lines contains four space-separated integers describing the respective values of r_{1}, c_{1}, r_{2}, and c_{2} for the $i^{t h}$ question (i.e., defining a submatrix with upper-left corner $\left(r_{1}, c_{1}\right)$ and bottom-right corner $\left(r_{2}, c_{2}\right)$).

Constraints

- $1 \leq n, m \leq 10^{5}$
- $1 \leq a_{i}, b_{i} \leq 10^{5}$
- $1 \leq q \leq 10$
- $0 \leq r_{1}, r_{2}<n$
- $0 \leq c_{1}, c_{2}<m$

Scoring

- $1 \leq n, m \leq 1000$ for 25% of score.
- $1 \leq n, m \leq 10^{5}$ for 100% of score.

Output Format

For each of Alex's questions, print the number of distinct integers in the given submatrix on a new line.

Sample Input 0

Sample Output 0

```
2
3
```


Explanation 0

Given $A=[1,2,3]$ and $B=[2,4,6]$, we build the following M :

The diagram below depicts the submatrices for each of the $q=3$ questions in green:

Query 1

Query 2

1	1	1	
2	2	2	
1	1	3	
Query 3			

Query 3

1. For the submatrix between $M_{0,0}$ and $M_{1,1}$, the set of integers is $\{1,2\}$. The number of distinct integers is 2 .
2. For the submatrix between $M_{0,0}$ and $M_{2,2}$, the set of integers is $\{1,2,3\}$. The number of distinct integers is 3 .
3. For the submatrix between $M_{1,1}$ and $M_{2,2}$, the set of integers is $\{1,2,3\}$. The number of distinct integers is 3 .
