GCD Matrix

Alex has two arrays defined as $A=[a_0,a_1,\ldots,a_{n-1}]$ and $B=[b_0,b_1,\ldots,b_{m-1}]$. He created an $n\times m$ matrix, M, where $M_{i,j}=\gcd(a_i,b_j)$ for each i,j in M. Recall that $\gcd(a,b)$ is the greatest common divisor of a and b.

For example, if A=[2,3] and B=[5,6], he builds M=[[1,2],[1,3]] like so:

$$egin{array}{ll} (i,j) & 0 & 1 \ 0 & \gcd(2,5) = 1\gcd(2,6) = 2 \ 1 & \gcd(3,5) = 1\gcd(3,6) = 3 \end{array}$$

Alex's friend Kiara loves matrices, so he gives her q questions about matrix M where each question is in the form of some submatrix of M with its upper-left corner at M_{r_1,c_1} and its bottom-right corner at M_{r_2,c_2} . For each question, find and print the number of *distinct* integers in the given submatrix on a new line.

Input Format

The first line contains three space-separated integers describing the respective values of n (the size of array A), m (the size of array B), and q (Alex's number of questions).

The second line contains n space-separated integers describing $a_0, a_1, \ldots, a_{n-1}$.

The third line contains m space-separated integers describing $b_0, b_1, \ldots, b_{m-1}$.

Each line i of the q subsequent lines contains four space-separated integers describing the respective values of r_1 , c_1 , r_2 , and c_2 for the i^{th} question (i.e., defining a submatrix with upper-left corner (r_1, c_1) and bottom-right corner (r_2, c_2)).

Constraints

- $1 \le n, m \le 10^5$
- $1 \le a_i, b_i \le 10^5$
- $1 \le q \le 10$
- $0 \le r_1, r_2 < n$
- $0 \le c_1, c_2 < m$

Scoring

- $1 \leq n, m \leq 1000$ for 25% of score.
- $1 \le n, m \le 10^5$ for 100% of score.

Output Format

For each of Alex's questions, print the number of distinct integers in the given submatrix on a new line.

Sample Input 0

```
3 3 3
1 2 3
2 4 6
0 0 1 1
0 0 2 2
1 1 2 2
```

Sample Output 0

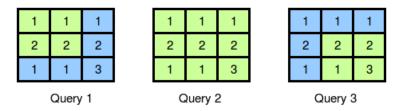
```
2
3
3
```

Explanation 0

Given A=[1,2,3] and B=[2,4,6], we build the following M:

```
(i,j) 0 1 2
0 \gcd(1,2) = \lg \operatorname{cd}(1,4) = \lg \operatorname{cd}(1,6) = 1
1 \gcd(2,2) = \lg \operatorname{cd}(2,4) = \lg \operatorname{cd}(2,6) = 2
2 \gcd(3,2) = \lg \operatorname{cd}(3,4) = \lg \operatorname{cd}(3,6) = 3
```

The diagram below depicts the submatrices for each of the q=3 questions in $\it green$:



- 1. For the submatrix between $M_{0,0}$ and $M_{1,1}$, the set of integers is $\{1,2\}$. The number of distinct integers is 2.
- 2. For the submatrix between $M_{0,0}$ and $M_{2,2}$, the set of integers is $\{1,2,3\}$. The number of distinct integers is 3.
- 3. For the submatrix between $M_{1,1}$ and $M_{2,2}$, the set of integers is $\{1,2,3\}$. The number of distinct integers is 3.